A Multi-Strategy Whale Optimization Algorithm and Its Application

计算机科学 数学优化 人口 水准点(测量) 局部最优 进化算法 超参数 人工智能 混乱的 算法 机器学习 数学 大地测量学 社会学 人口学 地理
作者
Wenbiao Yang,Kewen Xia,Shurui Fan,Wang Li,Tiejun Li,Jiangnan Zhang,Yu Feng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:108: 104558-104558 被引量:70
标识
DOI:10.1016/j.engappai.2021.104558
摘要

Whale Optimization Algorithm (WOA) is a key tool for solving complex engineering optimization problems, aiming at adjusting important parameters to satisfy constraints and optimal objectives. WOA has a simple structure, few parameters, high search capability, and easy implementation. However, it suffers from the same problems as other metaheuristic algorithms of being prone to local optima and slow convergence, for which the Multi-Strategy Whale Optimization Algorithm (MSWOA) is proposed. Four strategies are introduced in MSWOA. Firstly, a highly randomized chaotic logistic map is used to generate a high-quality initial population. Secondly, exploitation and exploration are enhanced by setting adaptive weights and dynamic convergence factors. Further, a Lévy flight mechanism is introduced to maintain the population diversity in each iteration. Finally, the Evolutionary Population Dynamics (EPD) mechanism is introduced to improve the efficiency of search agents in finding the optimum. Another problem lies in the Semi-Supervised Extreme Learning Machine (SSELM) based on manifold regularization is an effective classification and regression model, but the random generation of input weights and hidden layer thresholds and the grid selection of hyperparameters lead to unsatisfactory classification performance. To this end, we developed the MSWOA-SSELM model, optimally selected the parameters of SSLEM using MSWOA, and applied it to logging layer recognition, which effectively improved the accuracy of logging interpretation. By comparing the experiments with 14 swarm intelligence algorithms on 18 benchmark test functions, the CEC2017 benchmark suite, and an engineering application problem, the experimental results show that MSWOA is significantly superior and effective in solving global optimization problems. Finally, the proposed MSWOA-SSELM is applied in three wells and outperforms other classification models in terms of Accuracy (ACC), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). It obtained the best results with 96.2567% ACC, MAE of 0.0749, and RMSE of 0.3870.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来自3602完成签到,获得积分10
刚刚
1秒前
小菜鸡完成签到 ,获得积分10
4秒前
kexuedagz完成签到,获得积分10
5秒前
5秒前
1233完成签到,获得积分10
5秒前
pluto应助shin0324采纳,获得10
7秒前
李健应助大力元霜采纳,获得10
7秒前
爆米花应助清秀的机器猫采纳,获得10
7秒前
8秒前
专一的访文完成签到,获得积分10
8秒前
guozizi发布了新的文献求助10
8秒前
复杂天真完成签到 ,获得积分10
8秒前
9秒前
9秒前
YSY完成签到,获得积分10
10秒前
清爽语柳发布了新的文献求助10
10秒前
ding应助ss采纳,获得10
11秒前
Able阿拉基完成签到,获得积分10
11秒前
11秒前
张若旸发布了新的文献求助10
12秒前
jiangci完成签到,获得积分10
13秒前
14秒前
故渊完成签到,获得积分10
15秒前
15秒前
天天快乐应助俏皮的曼安采纳,获得10
15秒前
tao发布了新的文献求助10
15秒前
科研路人锋完成签到 ,获得积分10
16秒前
blackbear发布了新的文献求助10
16秒前
16秒前
张琦发布了新的文献求助10
17秒前
17秒前
小柒完成签到 ,获得积分10
18秒前
怪怪发布了新的文献求助10
18秒前
华仔应助早安采纳,获得10
18秒前
汤圆完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
slr发布了新的文献求助10
21秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846452
求助须知:如何正确求助?哪些是违规求助? 3388937
关于积分的说明 10555074
捐赠科研通 3109328
什么是DOI,文献DOI怎么找? 1713694
邀请新用户注册赠送积分活动 824842
科研通“疑难数据库(出版商)”最低求助积分说明 775068