Automated machine learning‐based model predicts postoperative delirium using readily extractable perioperative collected electronic data

逻辑回归 医学 置信区间 围手术期 布里氏评分 谵妄 接收机工作特性 重症监护室 随机森林 急诊医学 机器学习 内科学 外科 重症监护医学 计算机科学
作者
Xiaoyi Hu,He Liu,Xue Zhao,Xun Sun,Jian Zhou,Xing Gao,Hui‐Lian Guan,Yang Zhou,Qiu Zhao,Yuan Han,Jun‐Li Cao
出处
期刊:CNS Neuroscience & Therapeutics [Wiley]
卷期号:28 (4): 608-618 被引量:37
标识
DOI:10.1111/cns.13758
摘要

Abstract Objective Postoperative delirium (POD) is a common postoperative complication that is relevant to poor outcomes. Therefore, it is critical to find effective methods to identify patients with high risk of POD rapidly. Creating a fully automated score based on an automated machine‐learning algorithm may be a method to predict the incidence of POD quickly. Materials and methods This is the secondary analysis of an observational study, including 531 surgical patients who underwent general anesthesia. The least absolute shrinkage and selection operator (LASSO) was used to screen essential features associated with POD. Finally, eight features (age, intraoperative blood loss, anesthesia duration, extubation time, intensive care unit [ICU] admission, mini‐mental state examination score [MMSE], Charlson comorbidity index [CCI], postoperative neutrophil‐to‐lymphocyte ratio [NLR]) were used to established models. Four models, logistic regression, random forest, extreme gradient boosted trees, and support vector machines, were built in a training set (70% of participants) and evaluated in the remaining testing sample (30% of participants). Multivariate logistic regression analysis was used to explore independent risk factors for POD further. Results Model 1 (logistic regression model) was found to outperform other classifier models in testing data (area under the curve [AUC] of 80.44%, 95% confidence interval [CI] 72.24%–88.64%) and achieve the lowest Brier Score as well. These variables including age (OR = 1.054, 95%CI: 1.017~1.093), extubation time (OR = 1.027, 95%CI: 1.012~1.044), ICU admission (OR = 2.238, 95%CI: 1.313~3.793), MMSE (OR = 0.929, 95%CI: 0.876~0.984), CCI (OR = 1.197, 95%CI: 1.038~1.384), and postoperative NLR (OR = 1.029, 95%CI: 1.002~1.057) were independent risk factors for POD in this study. Conclusions We have built and validated a high‐performing algorithm to demonstrate the extent to which patient risk changes of POD during the perioperative period, thus leading to a rational therapeutic choice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
opera发布了新的文献求助10
1秒前
mumu发布了新的文献求助10
4秒前
4秒前
dolabmu完成签到 ,获得积分10
4秒前
baixue发布了新的文献求助10
4秒前
5秒前
饱满冥茗发布了新的文献求助10
5秒前
6秒前
opera完成签到,获得积分10
6秒前
丹丹子完成签到 ,获得积分10
6秒前
禹过天晴发布了新的文献求助10
7秒前
清新完成签到,获得积分10
7秒前
田様应助咕咕咕采纳,获得10
7秒前
8秒前
青衫完成签到 ,获得积分10
8秒前
9秒前
喜欢疲倦发布了新的文献求助10
9秒前
尼亚完成签到,获得积分10
9秒前
科研通AI5应助qiaocolate采纳,获得10
10秒前
看看看完成签到,获得积分10
10秒前
犹豫的海蓝完成签到,获得积分10
10秒前
foj完成签到,获得积分20
11秒前
lucky完成签到 ,获得积分10
11秒前
谷库一发布了新的文献求助10
12秒前
逸云发布了新的文献求助10
12秒前
xx发布了新的文献求助10
12秒前
科研通AI5应助闪闪的夜阑采纳,获得10
14秒前
科研通AI5应助饱满冥茗采纳,获得10
14秒前
牛马发布了新的文献求助10
14秒前
zlk完成签到 ,获得积分10
16秒前
hydrazine完成签到,获得积分20
16秒前
hs完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
Orange应助实验顺利采纳,获得10
18秒前
hiipaige完成签到,获得积分10
18秒前
喜欢疲倦完成签到,获得积分20
18秒前
笑点低中心完成签到,获得积分10
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838293
求助须知:如何正确求助?哪些是违规求助? 3380617
关于积分的说明 10515159
捐赠科研通 3100208
什么是DOI,文献DOI怎么找? 1707388
邀请新用户注册赠送积分活动 821709
科研通“疑难数据库(出版商)”最低求助积分说明 772890