PlantNet: A dual-function point cloud segmentation network for multiple plant species

分割 计算机科学 点云 人工智能 模式识别(心理学) 深度学习 预处理器 卷积神经网络 图像分割 F1得分
作者
Dawei Li,Guoliang Shi,Jinsheng Li,Yingliang Chen,Songyin Zhang,Shiyu Xiang,Shichao Jin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:184: 243-263 被引量:93
标识
DOI:10.1016/j.isprsjprs.2022.01.007
摘要

The accurate plant organ segmentation is crucial and challenging to the quantification of plant architecture and selection of plant ideotype. The popularity of point cloud data and deep learning methods make plant organ segmentation a feasible and cutting-edge research. However, current plant organ segmentation methods are specially designed for only one species or variety, and they rarely perform semantic segmentation (stems and leaves) and instance segmentation (individual leaf) simultaneously. This study innovates a dual-function deep learning neural network (PlantNet) to realize semantic segmentation and instance segmentation of two dicotyledons and one monocotyledon from point clouds. The innovations of the PlantNet include a 3D Edge-Preserving Sampling (3DEPS) strategy for preprocessing input points, a Local Feature Extraction Operation (LFEO) module based on dynamic graph convolutions, and a semantic-instance Feature Fusion Module (FFM). The semantic segmentation results of tobacco, tomato, and sorghum in average Precision, Recall, F1-score, and IoU reached 92.49%, 92.04%, 92.13%, and 85.86%, respectively; and the instance segmentation results in the mean precision (mPrec), the mean recall (mRec), the mean coverage (mCov), and the mean weighted coverage (mWCov) reached 83.30%, 74.08%, 78.62%, and 84.38%, respectively. The PlantNet outperformed state-of-the-art deep learning networks including PointNet, PointNet++, SGPN, and ASIS, which achieved an average improvement of 5.56%, 3.58%, 4.78%, and 6.74% in Precision, Recall, F1-score, IoU on semantic segmentation, and an average improvement of 22.18%, 16.37%, 14.13%, and 13.35% in mPrec, mRec, mCov, and mWCov on instance segmentation. In addition, the effectiveness of 3DEPS, sub-modules, and the new loss function were verified separately by the ablation analysis, in which the removal of any of them can result in a segmentation performance decline of up to 2.0% on average quantitative measures. This study may contribute to the development of plant phenotype extraction, ideotype selection, and intelligent agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjt18完成签到,获得积分10
刚刚
周周完成签到,获得积分10
刚刚
minhhuy发布了新的文献求助10
1秒前
黄海发布了新的文献求助10
2秒前
3秒前
3秒前
忙碌的数学人完成签到,获得积分10
4秒前
落霞与孤鹜齐飞完成签到,获得积分10
5秒前
彩色的誉完成签到,获得积分10
5秒前
6秒前
浏阳河发布了新的文献求助10
6秒前
多多完成签到 ,获得积分10
6秒前
zh完成签到,获得积分10
7秒前
8秒前
Orange应助小红花采纳,获得10
8秒前
昏睡的白桃完成签到,获得积分10
8秒前
赫若魔应助Epiphany采纳,获得10
10秒前
橙子发布了新的文献求助10
10秒前
11秒前
不与旋覆完成签到,获得积分10
12秒前
在水一方应助浏阳河采纳,获得10
12秒前
麞欎发布了新的文献求助10
13秒前
和谐的雅旋完成签到,获得积分10
13秒前
汉堡包应助lilili2060采纳,获得10
13秒前
榴莲完成签到,获得积分10
14秒前
15秒前
zhy完成签到,获得积分10
16秒前
追寻迎夏完成签到,获得积分10
16秒前
刘英琪完成签到,获得积分10
16秒前
谷飞飞完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
华理附院孙文博完成签到 ,获得积分10
19秒前
自信寒蕾完成签到,获得积分10
19秒前
贪玩的醉柳完成签到,获得积分10
19秒前
科研狂徒完成签到,获得积分10
20秒前
20秒前
小红花发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4814880
求助须知:如何正确求助?哪些是违规求助? 4126106
关于积分的说明 12767636
捐赠科研通 3864779
什么是DOI,文献DOI怎么找? 2126806
邀请新用户注册赠送积分活动 1148059
关于科研通互助平台的介绍 1043190