PlantNet: A dual-function point cloud segmentation network for multiple plant species

分割 计算机科学 点云 人工智能 模式识别(心理学) 深度学习 预处理器 卷积神经网络 图像分割 F1得分
作者
Dawei Li,Guoliang Shi,Jinsheng Li,Yingliang Chen,Songyin Zhang,Shiyu Xiang,Shichao Jin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:184: 243-263 被引量:80
标识
DOI:10.1016/j.isprsjprs.2022.01.007
摘要

The accurate plant organ segmentation is crucial and challenging to the quantification of plant architecture and selection of plant ideotype. The popularity of point cloud data and deep learning methods make plant organ segmentation a feasible and cutting-edge research. However, current plant organ segmentation methods are specially designed for only one species or variety, and they rarely perform semantic segmentation (stems and leaves) and instance segmentation (individual leaf) simultaneously. This study innovates a dual-function deep learning neural network (PlantNet) to realize semantic segmentation and instance segmentation of two dicotyledons and one monocotyledon from point clouds. The innovations of the PlantNet include a 3D Edge-Preserving Sampling (3DEPS) strategy for preprocessing input points, a Local Feature Extraction Operation (LFEO) module based on dynamic graph convolutions, and a semantic-instance Feature Fusion Module (FFM). The semantic segmentation results of tobacco, tomato, and sorghum in average Precision, Recall, F1-score, and IoU reached 92.49%, 92.04%, 92.13%, and 85.86%, respectively; and the instance segmentation results in the mean precision (mPrec), the mean recall (mRec), the mean coverage (mCov), and the mean weighted coverage (mWCov) reached 83.30%, 74.08%, 78.62%, and 84.38%, respectively. The PlantNet outperformed state-of-the-art deep learning networks including PointNet, PointNet++, SGPN, and ASIS, which achieved an average improvement of 5.56%, 3.58%, 4.78%, and 6.74% in Precision, Recall, F1-score, IoU on semantic segmentation, and an average improvement of 22.18%, 16.37%, 14.13%, and 13.35% in mPrec, mRec, mCov, and mWCov on instance segmentation. In addition, the effectiveness of 3DEPS, sub-modules, and the new loss function were verified separately by the ablation analysis, in which the removal of any of them can result in a segmentation performance decline of up to 2.0% on average quantitative measures. This study may contribute to the development of plant phenotype extraction, ideotype selection, and intelligent agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
黄杰完成签到 ,获得积分10
4秒前
Lucas应助UpUp采纳,获得10
5秒前
可爱的函函应助土豆土豆采纳,获得10
5秒前
2023204306324发布了新的文献求助10
6秒前
小玉米发布了新的文献求助10
7秒前
GG完成签到 ,获得积分10
8秒前
xxxqqq完成签到,获得积分10
9秒前
11秒前
12秒前
shilong.yang完成签到,获得积分10
12秒前
清颜完成签到 ,获得积分10
13秒前
14秒前
风中小鸽子完成签到,获得积分10
14秒前
犹豫的若发布了新的文献求助10
14秒前
xixi890430发布了新的文献求助50
14秒前
糊涂的雁易应助干饭采纳,获得10
14秒前
14秒前
shilong.yang发布了新的文献求助10
15秒前
15秒前
清爽的恋风完成签到,获得积分10
15秒前
16秒前
16秒前
桐桐应助izumi采纳,获得10
16秒前
gxh发布了新的文献求助10
17秒前
UpUp发布了新的文献求助10
17秒前
ikun完成签到,获得积分10
18秒前
GG关注了科研通微信公众号
18秒前
李健的小迷弟应助wegrvfd采纳,获得10
19秒前
坚强的紫菜完成签到 ,获得积分10
19秒前
烟花应助科研宝采纳,获得10
19秒前
研友_Z7O2MZ发布了新的文献求助10
20秒前
20秒前
20秒前
十言发布了新的文献求助20
22秒前
科研通AI5应助盛乾衣采纳,获得10
22秒前
立军发布了新的文献求助10
22秒前
Jasper应助超级的天思采纳,获得10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812456
求助须知:如何正确求助?哪些是违规求助? 3356978
关于积分的说明 10384629
捐赠科研通 3074104
什么是DOI,文献DOI怎么找? 1688616
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960