Extrathyroidal Extension Prediction of Papillary Thyroid Cancer With Computed Tomography Based Radiomics Nomogram: A Multicenter Study

列线图 无线电技术 甲状腺乳突癌 医学 计算机断层摄影术 甲状腺癌 放射科 扩展(谓词逻辑) 核医学 肿瘤科 内科学 癌症 计算机科学 程序设计语言
作者
Pengyi Yu,Xinxin Wu,Jinɡjinɡ Li,Ning Mao,Haicheng Zhang,Guibin Zheng,Xiao Han,Luchao Dong,Kaili Che,Qinglin Wang,Li Guan,Yakui Mou,Xicheng Song
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:13: 874396-874396 被引量:25
标识
DOI:10.3389/fendo.2022.874396
摘要

Objectives To develop and validate a Computed Tomography (CT) based radiomics nomogram for preoperative predicting of extrathyroidal extension (ETE) in papillary thyroid cancer (PTC) patients Methods A total of 153 patients were randomly assigned to training and internal test sets (7:3). 46 patients were recruited to serve as an external test set. A radiologist with 8 years of experience segmented the images. Radiomics features were extracted from each image and Delta-radiomics features were calculated. Features were selected by using one way analysis of variance and the least absolute shrinkage and selection operator in the training set. K-nearest neighbor, logistic regression, decision tree, linear-support vector machine (linear -SVM), gaussian-SVM, and polynomial-SVM were used to build 6 radiomics models. Next, a radiomics signature score (Rad-score) was constructed by using the linear combination of selected features weighted by their corresponding coefficients. Finally, a nomogram was constructed combining the clinical risk factors with Rad-scores. Receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and calibration curve were performed on the three sets to evaluate the nomogram’s performance. Results 4 radiomics features were selected. The six models showed the certain value of radiomics, with area under the curves (AUCs) from 0.642 to 0.701. The nomogram combining the Rad-score and clinical risk factors (radiologists’ interpretation) showed good performance (internal test set: AUC 0.750; external test set: AUC 0.797). Calibration curve and DCA demonstrated good performance of the nomogram. Conclusion Our radiomics nomogram incorporating the radiomics and radiologists’ interpretation has utility in the identification of ETE in PTC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gzf完成签到,获得积分10
刚刚
兴奋迎彤发布了新的文献求助10
1秒前
饶天源发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
霸气剑通完成签到 ,获得积分10
3秒前
柠檬黄发布了新的文献求助10
3秒前
嘿嘿发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
彼之鸩羽发布了新的文献求助10
7秒前
swslgd发布了新的文献求助10
7秒前
zzy完成签到 ,获得积分10
8秒前
慕青应助ecchaos采纳,获得10
10秒前
10秒前
花花小丸子关注了科研通微信公众号
11秒前
swh发布了新的文献求助10
11秒前
science应助蛋卷采纳,获得20
11秒前
努力生活的小柴完成签到,获得积分10
12秒前
12秒前
核桃应助欧博采纳,获得30
12秒前
希望天下0贩的0应助竹付采纳,获得10
13秒前
14秒前
14秒前
14秒前
叫我益达完成签到,获得积分10
15秒前
taotao216发布了新的文献求助30
15秒前
哈哈完成签到,获得积分10
16秒前
欢喜完成签到,获得积分10
18秒前
Shelley完成签到,获得积分20
18秒前
yyllyy完成签到,获得积分10
20秒前
20秒前
21秒前
明理的绿兰完成签到,获得积分10
21秒前
英姑应助六月底采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
传奇3应助小飞采纳,获得10
24秒前
QQ发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5703154
求助须知:如何正确求助?哪些是违规求助? 5150411
关于积分的说明 15239019
捐赠科研通 4857748
什么是DOI,文献DOI怎么找? 2606607
邀请新用户注册赠送积分活动 1557795
关于科研通互助平台的介绍 1515621