Contaminant source identification in groundwater by means of artificial neural network

人工神经网络 计算机科学 鉴定(生物学) 地下水 可靠性(半导体) 反问题 领域(数学分析) 数学优化 环境科学 运筹学 人工智能 数学 工程类 岩土工程 功率(物理) 数学分析 物理 生物 量子力学 植物
作者
Daniele Secci,Laura Molino,A. Zanini
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:611: 128003-128003 被引量:20
标识
DOI:10.1016/j.jhydrol.2022.128003
摘要

In a desired environmental protection system, groundwater may not be excluded. In addition to the problem of over-exploitation, in total disagreement with the concept of sustainable development, another not negligible issue concerns the groundwater contamination. Mainly, this aspect is due to intensive agricultural activities or industrialized areas. In literature, several papers have dealt with transport problem, especially for inverse problems in which the release history or the source location are identified. The innovative aim of the paper is to develop a data-driven model that is able to analyze multiple scenarios, even strongly non-linear, in order to solve forward and inverse transport problems, preserving the reliability of the results and reducing the uncertainty. Furthermore, this tool has the characteristic of providing extremely fast responses, essential to identify remediation strategies immediately. The advantages produced by the model were compared with literature studies. In this regard, a feedforward artificial neural network (ANN), which has been trained to handle different cases, represents the data-driven model. Firstly, to identify the concentration of the pollutant at specific observation points in the study area (forward problem); secondly, to deal with inverse problems identifying the release history at known source location (also in the case with multiple sources); then, in case of one contaminant source, identifying the release history and, at the same time, the location of the source in a specific sub-domain of the investigated area. At last, the observation error is investigated and estimated. The results are satisfactorily achieved, highlighting the capability of the ANN to deal with multiple scenarios by approximating nonlinear functions without the physical point of view that describes the phenomenon, providing reliable results, with very low computational burden and uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyang999完成签到 ,获得积分10
刚刚
整齐的手机完成签到,获得积分10
2秒前
2秒前
小雪完成签到,获得积分10
2秒前
姬欢欢完成签到 ,获得积分20
3秒前
4秒前
jenningseastera应助自由小然采纳,获得10
4秒前
4秒前
科研菜鸡完成签到,获得积分10
4秒前
小蘑菇应助稻草人采纳,获得10
5秒前
5秒前
斯文冷梅发布了新的文献求助10
5秒前
nickel发布了新的文献求助10
6秒前
科研小刘完成签到,获得积分10
6秒前
Lucas应助富婆莱莱采纳,获得10
6秒前
7秒前
tsytwn发布了新的文献求助10
8秒前
swkxwdh发布了新的文献求助10
10秒前
今后应助智海瑞采纳,获得10
10秒前
11秒前
芋泥丸丸完成签到,获得积分10
11秒前
姬欢欢发布了新的文献求助10
12秒前
小雪发布了新的文献求助20
13秒前
富婆莱莱完成签到,获得积分10
15秒前
tsytwn完成签到,获得积分10
15秒前
15秒前
yyyhhh发布了新的文献求助10
16秒前
Owen应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
华仔应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
18秒前
今后应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
19秒前
烟花应助科研通管家采纳,获得10
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847231
求助须知:如何正确求助?哪些是违规求助? 3389760
关于积分的说明 10558708
捐赠科研通 3110017
什么是DOI,文献DOI怎么找? 1714165
邀请新用户注册赠送积分活动 825107
科研通“疑难数据库(出版商)”最低求助积分说明 775255