Machine learning models on chemical inhibitors of mitochondrial electron transport chain

数量结构-活动关系 计算机科学 聚类分析 机器学习 生物系统 人工智能 计算生物学 生化工程 化学 生物 工程类
作者
Weihao Tang,Wenjia Liu,Zhongyu Wang,Huixiao Hong,Jingwen Chen
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:426: 128067-128067 被引量:14
标识
DOI:10.1016/j.jhazmat.2021.128067
摘要

Chemicals can induce adverse effects in humans by inhibiting mitochondrial electron transport chain (ETC) such as disrupting mitochondrial membrane potential, enhancing oxidative stress and causing some diseases. Thus, identifying ETC inhibitors (ETCi) is important to chemical risk assessment and protecting the public health. However, it is not feasible to identify all ETCi with experimental methods. Quantitative structure-activity relationship (QSAR) modeling is a promising method to rapidly and effectively identify ETCi. In this study, QSAR models for predicting ETCi were developed using machine learning methods. A clustering-based under-sampling (CBUS) method was developed to handle the imbalance issue in training sets. Structure-activity landscapes were generated and analyzed for training sets generated by the CBUS method. The consensus QSAR models constructed with CBUS achieved satisfactory performances (balanced accuracy = 0.852) in 100 iterations of five-fold cross validations, indicating the models can effectively classify ETCi. The classification model was further employed to screen chemicals in the Inventory of Existing Chemical Substances of China and 13 chemicals were identified as ETCi. Fifteen structural alerts for ETCi were identified in this study. These results demonstrated that the model and structural alerts are useful to screen ETCi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
AlexLam发布了新的文献求助10
2秒前
苏雅霏完成签到 ,获得积分10
5秒前
6秒前
6秒前
8秒前
善良的碧灵完成签到 ,获得积分10
9秒前
10秒前
nomore发布了新的文献求助10
11秒前
LILi发布了新的文献求助10
11秒前
13秒前
沉默的谷秋完成签到,获得积分10
14秒前
amumu完成签到,获得积分10
14秒前
17秒前
18秒前
ll完成签到,获得积分10
20秒前
21秒前
nomore完成签到,获得积分20
23秒前
LLLnna完成签到,获得积分10
24秒前
25秒前
ya发布了新的文献求助10
28秒前
大气的乌冬面完成签到,获得积分10
30秒前
梨小7发布了新的文献求助10
31秒前
迷路博完成签到,获得积分10
31秒前
Fan完成签到 ,获得积分10
31秒前
华仔应助嘿嘿采纳,获得10
33秒前
思源应助舒心平蝶采纳,获得10
34秒前
自由从筠发布了新的文献求助10
34秒前
怕孤独的青柏完成签到,获得积分10
35秒前
孙玮完成签到,获得积分10
38秒前
Neuro_dan完成签到,获得积分0
39秒前
咯噔完成签到,获得积分10
39秒前
40秒前
justin完成签到,获得积分10
42秒前
Linson完成签到,获得积分10
42秒前
舒心平蝶发布了新的文献求助10
46秒前
山奈完成签到 ,获得积分10
46秒前
久久完成签到,获得积分10
50秒前
50秒前
50秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823579
求助须知:如何正确求助?哪些是违规求助? 3365933
关于积分的说明 10438373
捐赠科研通 3085105
什么是DOI,文献DOI怎么找? 1697154
邀请新用户注册赠送积分活动 816235
科研通“疑难数据库(出版商)”最低求助积分说明 769462