FGFL: A blockchain-based fair incentive governor for Federated Learning

激励 计算机科学 声誉 订单(交换) 收入 块链 计算机安全 质量(理念) 调速器 众包 补偿(心理学) 过程(计算) 业务 微观经济学 万维网 法学 财务 物理 经济 哲学 操作系统 认识论 热力学 政治学 心理学 精神分析
作者
Liang Gao,Li Li,Yingwen Chen,Cheng‐Zhong Xu,Ming Xu
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier BV]
卷期号:163: 283-299 被引量:39
标识
DOI:10.1016/j.jpdc.2022.01.019
摘要

Federated Learning is a framework that coordinates a large amount of workers to train a shared model in a distributed manner, in which the training data are located on the workers' sides in order to preserve data privacy. There are two challenges in the crowdsourcing of FL, the workers who participant in training need to consume computing and communication resources, so that they are reluctant to participate in the training process if they can not get reasonable rewards. Moreover, there may be attackers who send arbitrary updates to get undeserving compensation or even destroy the model, thus, effective prevention of malicious workers is also critical. An incentive mechanism is urgently required in order to encourage high-quality workers to participate in FL and to punish the attackers. In this paper, we propose FGFL, a blockchain-based incentive governor for Federated Learning. In FGFL, we assess the participants with reputation and contribution indicators. Then the task publisher rewards workers fairly to attract efficient ones while the malicious ones are punished and eliminated. In addition, we propose a blockchain-based incentive management system to manage the incentive mechanism. We evaluate the effectiveness and fairness of FGFL through theoretical analysis and comprehensive experiments. The evaluation results show that FGFL fairly rewards workers according to their corresponding behavior and quality. FGFL increases the system revenue by 0.2% to 3.4% in reliable federations compared with baselines. And in the unreliable scenario where contains attackers, the system revenue of FGFL outperforms the baselines by more than 46.7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
威士忌www完成签到,获得积分20
1秒前
zryyy完成签到,获得积分10
2秒前
领导范儿应助11采纳,获得10
2秒前
松鼠发布了新的文献求助10
6秒前
6秒前
gege完成签到,获得积分10
7秒前
9秒前
Endeavor完成签到,获得积分10
10秒前
神勇朝雪完成签到,获得积分10
11秒前
无奈的萍发布了新的文献求助10
13秒前
yang发布了新的文献求助10
13秒前
14秒前
17秒前
小鹿发布了新的文献求助10
18秒前
MaggieFuuu发布了新的文献求助10
19秒前
22秒前
MaggieFuuu完成签到,获得积分10
25秒前
27秒前
邰归应助小皇帝采纳,获得30
27秒前
万姒发布了新的文献求助10
29秒前
30秒前
lizhiqian2024发布了新的文献求助10
30秒前
31秒前
34秒前
倾卿如玉完成签到 ,获得积分10
36秒前
pluto应助zryyy采纳,获得10
37秒前
传奇3应助从容的山兰采纳,获得10
37秒前
个性的振家完成签到,获得积分10
40秒前
NexusExplorer应助hhhhhh采纳,获得10
40秒前
LYZSh完成签到,获得积分10
42秒前
42秒前
星辰大海应助就叫十一吧采纳,获得10
44秒前
827584450应助三水采纳,获得10
45秒前
不安服饰发布了新的文献求助10
46秒前
yoke发布了新的文献求助10
48秒前
orixero应助激昂的如柏采纳,获得10
49秒前
50秒前
Lucas应助猪猪hero采纳,获得10
50秒前
单纯的问玉完成签到,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780490
求助须知:如何正确求助?哪些是违规求助? 3325946
关于积分的说明 10224872
捐赠科研通 3041027
什么是DOI,文献DOI怎么找? 1669160
邀请新用户注册赠送积分活动 799019
科研通“疑难数据库(出版商)”最低求助积分说明 758663