FGFL: A blockchain-based fair incentive governor for Federated Learning

激励 计算机科学 声誉 订单(交换) 收入 块链 计算机安全 质量(理念) 调速器 众包 补偿(心理学) 过程(计算) 业务 微观经济学 万维网 法学 财务 物理 经济 哲学 操作系统 认识论 热力学 政治学 心理学 精神分析
作者
Liang Gao,Li Li,Yingwen Chen,Cheng‐Zhong Xu,Ming Xu
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier]
卷期号:163: 283-299 被引量:39
标识
DOI:10.1016/j.jpdc.2022.01.019
摘要

Federated Learning is a framework that coordinates a large amount of workers to train a shared model in a distributed manner, in which the training data are located on the workers' sides in order to preserve data privacy. There are two challenges in the crowdsourcing of FL, the workers who participant in training need to consume computing and communication resources, so that they are reluctant to participate in the training process if they can not get reasonable rewards. Moreover, there may be attackers who send arbitrary updates to get undeserving compensation or even destroy the model, thus, effective prevention of malicious workers is also critical. An incentive mechanism is urgently required in order to encourage high-quality workers to participate in FL and to punish the attackers. In this paper, we propose FGFL, a blockchain-based incentive governor for Federated Learning. In FGFL, we assess the participants with reputation and contribution indicators. Then the task publisher rewards workers fairly to attract efficient ones while the malicious ones are punished and eliminated. In addition, we propose a blockchain-based incentive management system to manage the incentive mechanism. We evaluate the effectiveness and fairness of FGFL through theoretical analysis and comprehensive experiments. The evaluation results show that FGFL fairly rewards workers according to their corresponding behavior and quality. FGFL increases the system revenue by 0.2% to 3.4% in reliable federations compared with baselines. And in the unreliable scenario where contains attackers, the system revenue of FGFL outperforms the baselines by more than 46.7%.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜战斗机完成签到,获得积分10
1秒前
爆米花应助犹豫的靖仇采纳,获得10
1秒前
provin发布了新的文献求助10
2秒前
2秒前
MrH发布了新的文献求助10
3秒前
4秒前
4秒前
LL完成签到,获得积分10
5秒前
科目三应助风清扬采纳,获得10
6秒前
888发布了新的文献求助20
6秒前
刘鸿雁发布了新的文献求助10
8秒前
LATP发布了新的文献求助10
9秒前
roxy完成签到,获得积分10
10秒前
苗条秋荷完成签到,获得积分10
14秒前
CipherSage应助刘鸿雁采纳,获得10
15秒前
一部船完成签到 ,获得积分10
16秒前
大个应助田静然采纳,获得10
17秒前
平淡爆米花完成签到,获得积分10
17秒前
在水一方应助888采纳,获得10
18秒前
小樁完成签到,获得积分10
20秒前
22秒前
风趣凝荷完成签到 ,获得积分10
22秒前
科研通AI6.1应助文献狗采纳,获得10
23秒前
pluto应助provin采纳,获得10
23秒前
23秒前
DJ发布了新的文献求助20
24秒前
24秒前
gln完成签到 ,获得积分10
25秒前
25秒前
sci大户发布了新的文献求助10
27秒前
27秒前
爱吃鸡蛋发布了新的文献求助10
29秒前
风清扬发布了新的文献求助10
29秒前
寒冷谷梦完成签到,获得积分10
30秒前
54545发布了新的文献求助10
30秒前
王熙智发布了新的文献求助10
31秒前
悲凉的新筠完成签到,获得积分10
32秒前
35秒前
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877742
求助须知:如何正确求助?哪些是违规求助? 6545170
关于积分的说明 15682078
捐赠科研通 4996405
什么是DOI,文献DOI怎么找? 2692689
邀请新用户注册赠送积分活动 1634723
关于科研通互助平台的介绍 1592383