A systematic review on affective computing: emotion models, databases, and recent advances

情感计算 计算机科学 手势 水准点(测量) 情感(语言学) 情绪识别 情绪分析 领域(数学分析) 面部表情 数据库 人工智能 人机交互 心理学 沟通 大地测量学 地理 数学分析 数学
作者
Yan Wang,Wei Song,Wei Tao,Antonio Liotta,Dawei Yang,Xinlei Li,Shuyong Gao,Yixuan Sun,Weifeng Ge,Wei Zhang,Wenqiang Zhang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:83-84: 19-52 被引量:288
标识
DOI:10.1016/j.inffus.2022.03.009
摘要

Affective computing conjoins the research topics of emotion recognition and sentiment analysis, and can be realized with unimodal or multimodal data, consisting primarily of physical information (e.g., text, audio, and visual) and physiological signals (e.g., EEG and ECG). Physical-based affect recognition caters to more researchers due to the availability of multiple public databases, but it is challenging to reveal one's inner emotion hidden purposefully from facial expressions, audio tones, body gestures, etc. Physiological signals can generate more precise and reliable emotional results; yet, the difficulty in acquiring these signals hinders their practical application. Besides, by fusing physical information and physiological signals, useful features of emotional states can be obtained to enhance the performance of affective computing models. While existing reviews focus on one specific aspect of affective computing, we provide a systematical survey of important components: emotion models, databases, and recent advances. Firstly, we introduce two typical emotion models followed by five kinds of commonly used databases for affective computing. Next, we survey and taxonomize state-of-the-art unimodal affect recognition and multimodal affective analysis in terms of their detailed architectures and performances. Finally, we discuss some critical aspects of affective computing and its applications and conclude this review by pointing out some of the most promising future directions, such as the establishment of benchmark database and fusion strategies. The overarching goal of this systematic review is to help academic and industrial researchers understand the recent advances as well as new developments in this fast-paced, high-impact domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫茹完成签到 ,获得积分10
1秒前
goldNAN发布了新的文献求助10
2秒前
4秒前
标致靖仇发布了新的文献求助10
5秒前
kexuedagz完成签到,获得积分10
6秒前
bkagyin应助书中月采纳,获得30
7秒前
wangrblzu应助书中月采纳,获得10
7秒前
shanage应助书中月采纳,获得10
7秒前
Orange应助书中月采纳,获得30
7秒前
dfsf发布了新的文献求助10
9秒前
9秒前
华仔应助迷路路人采纳,获得10
10秒前
顾矜应助杨桃采纳,获得10
10秒前
李健应助轻语采纳,获得10
10秒前
13秒前
Ghiocel完成签到,获得积分10
13秒前
pi完成签到 ,获得积分10
14秒前
李昶完成签到 ,获得积分10
16秒前
雪球完成签到,获得积分10
16秒前
Lucas应助任无施采纳,获得10
18秒前
SYLH应助王羊补牢采纳,获得10
18秒前
18秒前
隐形曼青应助尊敬海豚momo采纳,获得10
18秒前
19秒前
qin完成签到,获得积分10
19秒前
20秒前
搞怪的怀蕊完成签到,获得积分10
20秒前
XIAOLI应助健忘的板凳采纳,获得10
22秒前
22秒前
23秒前
CaliU完成签到,获得积分10
24秒前
24秒前
创不可贴发布了新的文献求助10
25秒前
25秒前
坦呐发布了新的文献求助10
25秒前
26秒前
迷路路人发布了新的文献求助10
26秒前
YH应助研友_xnEOX8采纳,获得60
26秒前
斯文白白发布了新的文献求助10
29秒前
杨桃发布了新的文献求助10
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842878
求助须知:如何正确求助?哪些是违规求助? 3384881
关于积分的说明 10537922
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149