A systematic review on affective computing: emotion models, databases, and recent advances

情感计算 计算机科学 手势 水准点(测量) 情感(语言学) 情绪识别 情绪分析 领域(数学分析) 面部表情 数据库 人工智能 人机交互 心理学 数学分析 沟通 地理 数学 大地测量学
作者
Yan Wang,Wei Song,Wei Tao,Antonio Liotta,Dawei Yang,Xinlei Li,Shuyong Gao,Yixuan Sun,Weifeng Ge,Wei Zhang,Wenqiang Zhang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:83-84: 19-52 被引量:315
标识
DOI:10.1016/j.inffus.2022.03.009
摘要

Affective computing conjoins the research topics of emotion recognition and sentiment analysis, and can be realized with unimodal or multimodal data, consisting primarily of physical information (e.g., text, audio, and visual) and physiological signals (e.g., EEG and ECG). Physical-based affect recognition caters to more researchers due to the availability of multiple public databases, but it is challenging to reveal one's inner emotion hidden purposefully from facial expressions, audio tones, body gestures, etc. Physiological signals can generate more precise and reliable emotional results; yet, the difficulty in acquiring these signals hinders their practical application. Besides, by fusing physical information and physiological signals, useful features of emotional states can be obtained to enhance the performance of affective computing models. While existing reviews focus on one specific aspect of affective computing, we provide a systematical survey of important components: emotion models, databases, and recent advances. Firstly, we introduce two typical emotion models followed by five kinds of commonly used databases for affective computing. Next, we survey and taxonomize state-of-the-art unimodal affect recognition and multimodal affective analysis in terms of their detailed architectures and performances. Finally, we discuss some critical aspects of affective computing and its applications and conclude this review by pointing out some of the most promising future directions, such as the establishment of benchmark database and fusion strategies. The overarching goal of this systematic review is to help academic and industrial researchers understand the recent advances as well as new developments in this fast-paced, high-impact domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
华仔应助beituo采纳,获得10
4秒前
小二郎应助能干戎采纳,获得10
4秒前
斯李iko完成签到,获得积分10
5秒前
脑洞疼应助Dracule采纳,获得30
6秒前
科研通AI5应助man采纳,获得10
7秒前
8秒前
大果粒发布了新的文献求助10
10秒前
10秒前
11秒前
Carsen完成签到,获得积分10
13秒前
子暮发布了新的文献求助10
13秒前
听风发布了新的文献求助10
14秒前
情怀应助待放光的吖啶酯采纳,获得10
14秒前
14秒前
向日葵完成签到,获得积分10
14秒前
14秒前
李健的小迷弟应助明帅采纳,获得10
15秒前
芒果味发布了新的文献求助10
17秒前
柚子完成签到,获得积分20
18秒前
CAOHOU应助忠诚卫士采纳,获得10
18秒前
19秒前
19秒前
今后应助domingo采纳,获得10
19秒前
MR_Z发布了新的文献求助10
19秒前
ED应助可靠的老鼠采纳,获得30
19秒前
22秒前
23秒前
24秒前
Deer关注了科研通微信公众号
25秒前
小马甲应助听风采纳,获得10
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
26秒前
guoran完成签到,获得积分10
27秒前
Lucas应助张晓倩采纳,获得10
27秒前
善良身影发布了新的文献求助10
28秒前
科研通AI5应助子暮采纳,获得20
29秒前
zhw发布了新的文献求助10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4253326
求助须知:如何正确求助?哪些是违规求助? 3786455
关于积分的说明 11884236
捐赠科研通 3437048
什么是DOI,文献DOI怎么找? 1886314
邀请新用户注册赠送积分活动 937594
科研通“疑难数据库(出版商)”最低求助积分说明 843249