Whole Genome Messenger RNA Profiling Identifies a Novel Signature to Predict Gastric Cancer Survival

信使核糖核酸 计算生物学 生存分析 癌症 DNA甲基化 生物信息学 医学 生物 基因 基因表达 肿瘤科 内科学 遗传学
作者
Jin Dai,Zhexuan Li,Yang Zhang,Junling Ma,Tong Zhou,Wei‐Cheng You,Wenqing Li,Kai‐Feng Pan
出处
期刊:Clinical and translational gastroenterology [Lippincott Williams & Wilkins]
卷期号:10 (1): e00004-e00004 被引量:30
标识
DOI:10.14309/ctg.0000000000000004
摘要

OBJECTIVES: Molecular prognostic biomarkers for gastric cancer (GC) are still limited. We aimed to identify potential messenger RNAs (mRNAs) associated with GC prognosis and further establish an mRNA signature to predict the survival of GC based on the publicly accessible databases. METHODS: Discovery of potential mRNAs associated with GC survival was undertaken for 441 patients with GC based on the Cancer Genome Atlas (TCGA), with information on clinical characteristics and vital status. Gene ontology functional enrichment analysis and pathway enrichment analysis were conducted to interrogate the possible biological functions. We narrowed down the list of mRNAs for validation study based on a significance level of 1.00 × 10 −4 , also integrating the information from the methylation analysis and constructing the protein–protein interaction network for elucidating biological processes. A total of 54 mRNAs were further studied in the validation stage, using the Gene Expression Omnibus (GEO) database (GSE84437, n = 433). The validated mRNAs were used to construct a risk score model predicting the prognosis of GC. RESULTS: A total of 13 mRNAs were significantly associated with survival of GC, after the validation stage, including DCLK1 , FLRT2 , MCC , PRICKLE1 , RIMS1 , SLC25A15 , SLCO2A1 , CDO1 , GHR , CD109 , SELP , UPK1B , and CD36 . Except CD36 , DCLK1 , and SLCO2A1 , other mRNAs are newly reported to be associated with GC survival. The 13 mRNA-based risk score had good performance on distinguishing GC prognosis, with a higher score indicating worse survival in both TCGA and GEO datasets. CONCLUSIONS: We established a 13-mRNA signature to potentially predict the prognosis of patients with GC, which might be useful in clinical practice for informing patient stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
badada完成签到,获得积分10
1秒前
独立江湖女完成签到 ,获得积分10
1秒前
阿拉蕾发布了新的文献求助10
1秒前
1秒前
2秒前
Jiangcm发布了新的文献求助10
2秒前
2秒前
猪血糕yu完成签到,获得积分10
2秒前
沐风发布了新的文献求助10
3秒前
高贵语海完成签到,获得积分10
3秒前
元羞花完成签到,获得积分10
4秒前
谢亚飞完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
sherrt发布了新的文献求助10
6秒前
暴躁的兔子完成签到,获得积分10
7秒前
LHNini发布了新的文献求助10
7秒前
帅气的宽发布了新的文献求助10
7秒前
科研通AI5应助mm采纳,获得10
8秒前
脑洞疼应助景磬采纳,获得10
8秒前
8秒前
小鱼完成签到 ,获得积分10
9秒前
一一一完成签到,获得积分10
9秒前
Yiran完成签到 ,获得积分10
9秒前
9秒前
alteras完成签到,获得积分10
10秒前
大迷糊发布了新的文献求助10
10秒前
yan完成签到,获得积分10
10秒前
现代的战斗机完成签到,获得积分10
10秒前
科研通AI5应助王之争霸采纳,获得10
11秒前
大个应助1223采纳,获得10
11秒前
Coral关注了科研通微信公众号
11秒前
鱼在哪儿发布了新的文献求助10
11秒前
zzz完成签到 ,获得积分10
12秒前
所所应助麦子采纳,获得10
12秒前
丑八怪完成签到,获得积分10
12秒前
陈旻翔完成签到,获得积分10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813