Quantification of stress transfer in a model cellulose nanocrystal/graphene bilayer using Raman spectroscopy

石墨烯 材料科学 拉曼光谱 双层石墨烯 复合材料 双层 复合数 单层 纳米技术 纤维素 化学工程 光学 化学 工程类 物理 生物化学
作者
Joseph J. Morgan,Monica F. Craciun,Stephen J. Eichhorn
出处
期刊:Composites Science and Technology [Elsevier]
卷期号:177: 34-40 被引量:19
标识
DOI:10.1016/j.compscitech.2019.04.011
摘要

Abstract Graphene and cellulose possess a multitude of unique and useful properties for applications in electronics, sensors and composites which has led to significant scientific interest over the past 5–10 years. Despite this interest, there has been no experimental work investigating the interface or stress transfer efficiency between these materials, which limits future developments in this field. With the aim of investigating this interface, we have created a model bilayer composite, consisting of a tunicate derived cellulose nanocrystal (T-CNC) film and a monolayer of graphene produced by chemical vapour deposition. Raman spectroscopy has been used to monitor the four-point bending of this model bilayer composite. Shifts in the position of Raman bands, unique for both the cellulose and graphene components of this model composite, are recorded. Using a novel analysis of these Raman band shifts, we have formed an expression which deconvolutes the total stress transfer efficiency of the model system. Using this deconvolution, a stress transfer efficiency of 66% has been derived at the cellulose/graphene interface. In addition, splitting of the graphene Raman G band has allowed calculation of the shear strain in the graphene, which is assumed to be equal to that at the cellulose-graphene interface. The individual T-CNCs in the reference samples showed location dependent preferential orientations. The film was found to be stiffer when the T-CNCs were oriented parallel to the loading axis. It was intended that the varying stiffness of the cellulose film could be used to analyse the effects of underlying film stiffness on stress transfer efficiency, but conclusions from this test were limited. The detailed interface analysis presented here will help to inform design in future cellulose/graphene devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zz发布了新的文献求助10
刚刚
LKT发布了新的文献求助10
1秒前
Ganyuan发布了新的文献求助10
1秒前
1秒前
HJJHJH发布了新的文献求助20
1秒前
2秒前
完美世界应助Wucl采纳,获得10
3秒前
领导范儿应助饱满的书萱采纳,获得30
3秒前
共享精神应助饱满的书萱采纳,获得10
3秒前
3秒前
rumor完成签到,获得积分10
3秒前
苁蓉发布了新的文献求助10
3秒前
4秒前
5秒前
途中人发布了新的文献求助10
5秒前
5秒前
roy应助刘冰芸采纳,获得10
5秒前
111发布了新的文献求助10
6秒前
狒狒发布了新的文献求助10
6秒前
魁梧的奇迹完成签到,获得积分10
6秒前
7秒前
pluto应助勤劳的清洁工采纳,获得10
7秒前
夏xia完成签到 ,获得积分10
7秒前
微笑溪灵发布了新的文献求助10
7秒前
归尘发布了新的文献求助10
8秒前
思源应助琉璃草梦采纳,获得10
9秒前
9秒前
动人的乾发布了新的文献求助10
9秒前
9秒前
Ainsley完成签到,获得积分10
9秒前
川baba完成签到,获得积分10
10秒前
李科研发布了新的文献求助10
10秒前
XX发布了新的文献求助10
11秒前
11秒前
Huck发布了新的文献求助10
11秒前
二仙桥成华大道完成签到,获得积分10
12秒前
12秒前
炫酷皮皮天完成签到,获得积分10
12秒前
脑洞疼应助饱满的书萱采纳,获得10
12秒前
今后应助饱满的书萱采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710639
求助须知:如何正确求助?哪些是违规求助? 5200300
关于积分的说明 15261682
捐赠科研通 4863272
什么是DOI,文献DOI怎么找? 2610500
邀请新用户注册赠送积分活动 1560823
关于科研通互助平台的介绍 1518430