ClusterNet: a clustering distributed prior embedded detection network for early‐stage esophageal squamous cell carcinoma diagnosis

聚类分析 计算机科学 嵌入 人工智能 集合(抽象数据类型) 放大倍数 医学影像学 可视化 阶段(地层学) 模式识别(心理学) 食管鳞状细胞癌 精确性和召回率 机器学习 医学 病理 古生物学 生物 程序设计语言
作者
Peisheng Wang,Shi‐Lun Cai,Weimin Tan,Bo Yan,Yunshi Zhong
出处
期刊:Medical Physics [Wiley]
卷期号:50 (2): 854-866 被引量:2
标识
DOI:10.1002/mp.16041
摘要

Early and accurate diagnosis of esophageal squamous cell carcinoma (ESCC) is important for reducing mortality. Analyzing intrapapillary capillary loops' (IPCLs) patterns on magnification endoscopy with narrow band imaging (ME-NBI) has been demonstrated effective in the diagnosis of early-stage ESCC. However, even experienced endoscopists may face difficulty in finding and classifying countless IPCLs on ME-NBI.We propose a novel clustering prior embedded detection network: ClusterNet. ClusterNet is capable of analyzing the distribution of IPCLs on ME-NBI automatically and enables endoscopists to overview multiple types of visualization. With ClusterNet assisting, endoscopists may observe ME-NBI images more efficiently, thus they may also predict the pathology and make medical decisions more easily.We propose the first large-scale ME-NBI dataset with fine-grained annotations by consensus of expert endoscopists. The dataset is splitted into a training set and an independent testing set based on patients. With two strategies for embedding, ClusterNet can automatically take the clustering effect into consideration. Prior to this work, none of the existing approaches take the clustering effect, which is rather important in classifying the IPCLs, into account.ClusterNet achieves an average precision of 81.2% and an average recall of 90.0% for the detection of IPCLs patterns on each patient of the independent testing set. We also compare ClusterNet with other state-of-the-art detection approaches. The performance of ClusterNet with embedding strategies is consistently superior to that of other approaches in terms of average precision, recall and F2-Score.Experiments demonstrate that our proposed method is able to detect almost all the IPCLs patterns on ME-NBI and classify them according to the Japanese Endoscopic Society (JES) classification accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
笑笑完成签到,获得积分20
5秒前
6秒前
7秒前
笑笑发布了新的文献求助10
8秒前
11秒前
imomoe完成签到,获得积分10
13秒前
14秒前
14秒前
乐乐应助greatsnow采纳,获得10
15秒前
asdf发布了新的文献求助10
16秒前
19秒前
内向绿竹发布了新的文献求助10
20秒前
20秒前
23秒前
吴可之发布了新的文献求助10
24秒前
风趣谷槐完成签到,获得积分10
24秒前
卷卷豆完成签到 ,获得积分10
25秒前
Zz发布了新的文献求助10
25秒前
顾矜应助Cherry采纳,获得10
27秒前
顺心牛排发布了新的文献求助10
29秒前
科研通AI2S应助内向绿竹采纳,获得10
31秒前
科研通AI5应助芷荷采纳,获得10
31秒前
领导范儿应助顺心牛排采纳,获得10
34秒前
冷傲迎梦发布了新的文献求助10
35秒前
小橙子完成签到 ,获得积分10
35秒前
36秒前
41秒前
41秒前
临诗发布了新的文献求助10
41秒前
Ms_Galaxea完成签到,获得积分10
44秒前
45秒前
柒柒完成签到,获得积分10
46秒前
科研通AI5应助我是楠个谁采纳,获得10
49秒前
xiaopan9083发布了新的文献求助10
51秒前
51秒前
Zz完成签到,获得积分10
53秒前
54秒前
三三四完成签到,获得积分10
55秒前
淡然靖柔发布了新的文献求助10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217445
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668060
邀请新用户注册赠送积分活动 798494
科研通“疑难数据库(出版商)”最低求助积分说明 758385