Hierarchical Scene Normality-Binding Modeling for Anomaly Detection in Surveillance Videos

异常检测 计算机科学 背景(考古学) 计算机视觉 聚类分析 帧(网络) 等级制度 人工智能 目标检测 模式识别(心理学) 古生物学 电信 经济 市场经济 生物
作者
Qianyue Bao,Fang Liu,Yang Liu,Licheng Jiao,Xu Liu,Lingling Li
标识
DOI:10.1145/3503161.3548199
摘要

Anomaly detection in surveillance videos is an important topic in the multimedia community, which requires efficient scene context extraction and the capture of temporal information as a basis for decision. From the perspective of hierarchical modeling, we parse the surveillance scene from global to local and propose a Hierarchical Scene Normality-Binding Modeling framework (HSNBM) to handle anomaly detection. For the static background hierarchy, we design a Region Clustering-driven Multi-task Memory Autoencoder (RCM-MemAE), which can simultaneously perform region segmentation and scene reconstruction. The normal prototypes of each local region are stored, and the frame reconstruction error is subsequently amplified by global memory augmentation. For the dynamic foreground object hierarchy, we employ a Scene-Object Binding Frame Prediction module (SOB-FP) to bind all foreground objects in the frame with the prototypes stored in the background hierarchy according their positions, thus fully exploit the normality relationship between foreground and background. The bound features are then fed into the decoder to predict the future movement of the objects. With the binding mechanism between foreground and background, HSNBM effectively integrates the "reconstruction" and "prediction" tasks and builds a semantic bridge between the two hierarchies. Finally, HSNBM fuses the anomaly scores of the two hierarchies to make a comprehensive decision. Extensive empirical studies on three standard video anomaly detection datasets demonstrate the effectiveness of the proposed HSNBM framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
垃圾桶发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
parpate发布了新的文献求助10
6秒前
tough发布了新的文献求助20
7秒前
Omega完成签到,获得积分10
7秒前
小马甲应助逆旅采纳,获得10
7秒前
华志文发布了新的文献求助10
7秒前
jenningseastera应助你好采纳,获得10
10秒前
勤恳风华完成签到,获得积分10
14秒前
129753完成签到,获得积分10
17秒前
Sahar完成签到,获得积分10
18秒前
zz完成签到,获得积分10
20秒前
20秒前
激情的一斩完成签到 ,获得积分10
20秒前
垃圾桶完成签到,获得积分10
22秒前
jenningseastera应助你好采纳,获得10
22秒前
田様应助江湖浪子采纳,获得30
25秒前
syf发布了新的文献求助10
25秒前
25秒前
星辰大海应助甜美宛儿采纳,获得10
27秒前
ZZ发布了新的文献求助10
28秒前
所所应助平常心采纳,获得10
29秒前
29秒前
30秒前
俞秋烟发布了新的文献求助10
30秒前
斯文败类应助害羞雨南采纳,获得10
31秒前
mmz完成签到 ,获得积分10
35秒前
Augustines完成签到,获得积分10
35秒前
Shun发布了新的文献求助10
35秒前
小马甲应助yuaaaann采纳,获得10
37秒前
老板来杯冷咖啡完成签到,获得积分10
38秒前
39秒前
大模型应助风清扬采纳,获得10
39秒前
39秒前
Owen应助wish采纳,获得10
42秒前
甜美宛儿发布了新的文献求助10
43秒前
cer发布了新的文献求助10
44秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Dietary intake and glutamine-serine metabolism control pathologic vascular stiffness 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845261
求助须知:如何正确求助?哪些是违规求助? 3387384
关于积分的说明 10549216
捐赠科研通 3108109
什么是DOI,文献DOI怎么找? 1712430
邀请新用户注册赠送积分活动 824404
科研通“疑难数据库(出版商)”最低求助积分说明 774767