Relationship existence recognition-based social group detection in urban public spaces

社会团体 群(周期表) 抓住 利用 计算机科学 人工智能 社会关系 模式识别(心理学) 心理学 社会心理学 计算机安全 有机化学 化学 程序设计语言
作者
Lindong Li,Linbo Qing,Li Guo,Yonghong Peng
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:516: 92-105 被引量:5
标识
DOI:10.1016/j.neucom.2022.10.042
摘要

In urban public spaces, a social group consists of two or more individuals who share some social relationships and interact based on mutual expectations. However, most existing studies found people's F-formations on a top view, which is hard to observe their social contexts and the top-view videos are not easily accessible in real urban life. Recently, some researchers turned to urban scenes and analysed front-view human behaviours for social group detection. But these methods still cannot grasp the nature of social groups, i.e., the relationships among individuals. It is the key to finding social groups to judge whether any two individuals belong to the same cluster. Therefore, this paper proposes a new paradigm: relationship existence recognition-based social group detection. Additionally, on top of the paradigm, we designed a new social group detection algorithm incorporated with the visual cue-based and non-visual cue-based components. Specifically, the former exploits the spatial interactions and the temporal information to recognise the existence of social relationships through supervised deep learning. The latter estimates the similarities of trajectory pairs using the unsupervised spatial–temporal position information. Social group detection achieves superior accuracy with the two components' complementary results. On Social-CAD (Social Collective Activity Dataset) and PLPS (Public Life in Public Space) datasets, extensive experiments demonstrate that our algorithm outperforms the state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孟冬完成签到 ,获得积分10
2秒前
做实验太菜完成签到,获得积分10
3秒前
如梦如画完成签到 ,获得积分10
3秒前
3秒前
fangshb发布了新的文献求助10
4秒前
充电宝应助kk采纳,获得10
4秒前
liu发布了新的文献求助10
7秒前
8秒前
小萝莉完成签到,获得积分10
9秒前
11秒前
李健的小迷弟应助伍寒烟采纳,获得10
12秒前
12秒前
CodeCraft应助发文章12138采纳,获得10
12秒前
husi发布了新的文献求助10
13秒前
Jasper应助showmaker采纳,获得10
14秒前
柚子完成签到 ,获得积分10
14秒前
天天快乐应助丰富的不惜采纳,获得10
16秒前
Aaron发布了新的文献求助10
16秒前
16秒前
香蕉觅云应助抱大佬大腿采纳,获得10
17秒前
18秒前
发文章12138完成签到,获得积分10
19秒前
乌苏完成签到 ,获得积分10
20秒前
科目三应助小岚乖乖采纳,获得10
22秒前
23秒前
25秒前
26秒前
27秒前
a涵发布了新的文献求助10
30秒前
科研通AI5应助SWZ采纳,获得10
31秒前
31秒前
ding应助潇洒的凡松采纳,获得10
32秒前
32秒前
32秒前
伍寒烟发布了新的文献求助10
34秒前
zzzz完成签到 ,获得积分10
35秒前
小岚乖乖完成签到,获得积分10
35秒前
冷酷的柚子完成签到,获得积分20
35秒前
初余发布了新的文献求助10
36秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843860
求助须知:如何正确求助?哪些是违规求助? 3386212
关于积分的说明 10544206
捐赠科研通 3107013
什么是DOI,文献DOI怎么找? 1711358
邀请新用户注册赠送积分活动 824049
科研通“疑难数据库(出版商)”最低求助积分说明 774409