Semi-Supervised Multiscale Dynamic Graph Convolution Network for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 像素 人工智能 计算机科学 图形 邻接矩阵 邻接表 分类器(UML) 卷积神经网络 卷积(计算机科学) 分割 算法 人工神经网络 理论计算机科学
作者
Yuqun Yang,Xu Tang,Xiangrong Zhang,Jingjing Ma,Fang Liu,Xiuping Jia,Licheng Jiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 6806-6820 被引量:53
标识
DOI:10.1109/tnnls.2022.3212985
摘要

In recent years, convolutional neural networks (CNNs)-based methods achieve cracking performance on hyperspectral image (HSI) classification tasks, due to its hierarchical structure and strong nonlinear fitting capacity. Most of them, however, are supervised approaches that need a large number of labeled data to train them. Conventional convolution kernels are fixed shape of rectangular with fixed sizes, which are good at capturing short-range relations between pixels within HSIs but ignore the long-range context within HSIs, limiting their performance. To overcome the limitations mentioned above, we present a dynamic multiscale graph convolutional network (GCN) classifier (DMSGer). DMSGer first constructs a relatively small graph at region-level based on a superpixel segmentation algorithm and metric-learning. A dynamic pixel-level feature update strategy is then applied to the region-level adjacency matrix, which can help DMSGer learn the pixel representation dynamically. Finally, to deeply understand the complex contents within HSIs, our model is expanded into a multiscale version. On the one hand, by introducing graph learning theory, DMSGer accomplishes HSI classification tasks in a semi-supervised manner, relieving the pressure of collecting abundant labeled samples. Superpixels are generally in irregular shapes and sizes which can group only similar pixels in a neighborhood. On the other hand, based on the proposed dynamic-GCN, the pixel-level and region-level information can be captured simultaneously in one graph convolution layer such that the classification results can be improved. Also, due to the proper multiscale expansion, more helpful information can be captured from HSIs. Extensive experiments were conducted on four public HSIs, and the promising results illustrate that our DMSGer is robust in classifying HSIs. Our source codes are available at https://github.com/TangXu-Group/DMSGer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
派大星完成签到 ,获得积分10
1秒前
打打应助bbabb采纳,获得50
1秒前
1秒前
我爱学习关注了科研通微信公众号
1秒前
心心发布了新的文献求助10
2秒前
隐形曼青应助梓榆采纳,获得10
2秒前
量子星尘发布了新的文献求助20
2秒前
3秒前
惠香香的完成签到,获得积分10
3秒前
cslc完成签到,获得积分10
3秒前
4秒前
5秒前
hhh发布了新的文献求助10
5秒前
6秒前
踏实觅波发布了新的文献求助30
7秒前
7秒前
8秒前
8秒前
9秒前
奋斗小真完成签到,获得积分10
9秒前
迷路的雅霜完成签到,获得积分10
9秒前
carriebai发布了新的文献求助10
10秒前
Kyoemji发布了新的文献求助10
10秒前
10秒前
梓榆完成签到,获得积分10
11秒前
体贴雪碧发布了新的文献求助10
12秒前
12秒前
黎明完成签到,获得积分10
12秒前
张张发布了新的文献求助10
12秒前
12秒前
13秒前
英姑应助今夜有雨采纳,获得10
13秒前
swram完成签到,获得积分10
14秒前
绝望的老实人完成签到,获得积分10
14秒前
老夫子爱读书给老夫子爱读书的求助进行了留言
14秒前
量子星尘发布了新的文献求助10
14秒前
Profeto应助蒙蒙细雨采纳,获得10
14秒前
大个应助cchx采纳,获得10
14秒前
FashionBoy应助一只鲨呱采纳,获得10
15秒前
aLIgn完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4956003
求助须知:如何正确求助?哪些是违规求助? 4217909
关于积分的说明 13126143
捐赠科研通 4000484
什么是DOI,文献DOI怎么找? 2189389
邀请新用户注册赠送积分活动 1204452
关于科研通互助平台的介绍 1116326