Highly thermally conductive phase change composites with anisotropic graphene/cellulose nanofiber hybrid aerogels for efficient temperature regulation and solar-thermal-electric energy conversion applications

材料科学 复合材料 热能储存 太阳能 相变材料 热导率 石墨烯 热能 可再生能源 储能 热的 纳米技术 电气工程 物理 工程类 气象学 功率(物理) 生物 量子力学 生态学
作者
Chao Shu,Haoyu Zhao,Sai Zhao,Wenchao Deng,Min Peng,Xiao‐Hang Lu,Xiaofeng Li,Zhong‐Zhen Yu
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:248: 110367-110367 被引量:104
标识
DOI:10.1016/j.compositesb.2022.110367
摘要

With the increasing concerns about the shortage of fossil fuels and the environmental pollution, it is imperative to utilize clean and renewable solar energy. Although organic phase change materials have great potentials in storing and releasing thermal energy, the poor solar light absorption and low thermal conductivity limit their efficiencies in absorbing solar energy and converting it to thermal and electrical energies. Herein, highly thermally conductive phase change composites with enhanced thermal energy storage capabilities are prepared by constructing vertically aligned graphene/cellulose nanofiber aerogels (GCAs) followed by vacuum-assisted impregnation of paraffin for efficient temperature regulation and solar-thermal-electric energy conversion applications. An optimal GCA/paraffin phase change composite exhibits an exceptional thermal conductivity of 15.9 W m−1 K−1 at the low graphene loading of 3.35 wt%, a high latent heat retention of 98%, and a greatly enhanced shape stability. Furthermore, the phase change composite is efficient in the temperature regulation of a greenhouse and the solar-thermal-electric energy conversion. A high output voltage of 823.2 mV is achieved under the solar light irradiation of 5 kW m−2. This work demonstrates a promising strategy for efficiently absorbing and converting solar energy, and storing and utilizing thermal energy for applications in energy-related devices and systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啊张发布了新的文献求助30
1秒前
橙子快跑发布了新的文献求助10
1秒前
深情的安青发布了新的文献求助100
1秒前
Rich_WH发布了新的文献求助10
1秒前
爱爱精神境界完成签到,获得积分20
2秒前
在水一方应助贪玩的台灯采纳,获得10
3秒前
3秒前
研友_8Raw2Z发布了新的文献求助10
4秒前
Akim应助Shu舒采纳,获得10
4秒前
酷波er应助蓝风铃采纳,获得10
4秒前
dgqz发布了新的文献求助10
4秒前
123完成签到,获得积分10
5秒前
5秒前
chenkaixin完成签到,获得积分10
5秒前
guo发布了新的文献求助10
5秒前
5秒前
Mikeychen完成签到,获得积分10
6秒前
6秒前
Dryad完成签到,获得积分10
6秒前
7秒前
7秒前
畅快的听枫完成签到,获得积分10
7秒前
7秒前
勤奋滑板完成签到,获得积分10
7秒前
希哩哩完成签到 ,获得积分10
7秒前
好运莲莲发布了新的文献求助10
7秒前
8秒前
隐形曼青应助max采纳,获得10
8秒前
8秒前
Ryan完成签到,获得积分10
9秒前
不想看文献完成签到 ,获得积分10
9秒前
橙子快跑完成签到,获得积分10
9秒前
科目三应助123采纳,获得10
10秒前
10秒前
NO发布了新的文献求助10
10秒前
Hello应助宝安采纳,获得10
11秒前
干净的早晨完成签到,获得积分10
11秒前
啊张完成签到,获得积分10
11秒前
开心的吗喽完成签到 ,获得积分10
11秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388652
求助须知:如何正确求助?哪些是违规求助? 4510971
关于积分的说明 14037083
捐赠科研通 4421705
什么是DOI,文献DOI怎么找? 2428895
邀请新用户注册赠送积分活动 1421453
关于科研通互助平台的介绍 1400650