水培
持续性
光合反应器
人口
环境科学
普通小球藻
农业
生物安全
生物技术
光合作用
水华
营养物
生物
藻类
农学
生态学
植物
生物燃料
社会学
人口学
浮游植物
作者
Mingyao Wang,Xiao Yang,Tao Huang,Mengyue Wang,Yunxiang He,Guidong Gong,Yajing Zhang,Xue Liao,Xiaoling Wang,Qichang Yang,Junling Guo
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-12-08
卷期号:17 (24): 25136-25146
被引量:3
标识
DOI:10.1021/acsnano.3c08077
摘要
The growing global population necessitates substantial increases in food production. Hydroponic cultivation systems afford a critical alternative for food sustainability and enable stable annual production regardless of the climatic and geographical variations. However, the overgrowth of harmful algal blooms significantly threatens the crop yield by competing with nutrition in the solution and producing contaminants. The conventional practice of algaecides fails to control algal proliferation due to the limited efficiency and food safety concerns. Nanopesticides can deliver active ingredients responsively to suppress crop diseases and offer solutions to current practical challenges and difficulties. Inspired by prospects of nanotechnology for agricultural applications, we have utilized natural polyphenols and copper ions (Cu2+ ions) to develop self-assembled nanoalgaecides referred to as CuBes. The nanoalgaecide attached to algal cells via phenolic surface interactions, enabling localized Cu2+ ion release. This cell-targeted delivery suppressed Chlorella vulgaris for over 30 days (99% inhibition). Transcriptomics revealed that the nanoalgaecide disrupted algal metabolism by downregulating photosynthesis and chlorophyll pathways. In a solar-illuminated plant factory, the nanoalgaecide showed higher algal inhibition and lettuce biosafety versus the commercial Kocide 3000. Notably, the use of nanoalgaecide can enhance the nutrient value of lettuces, which meets the daily supply of Cu for adults. By integrating smart nanotechnology design with selective delivery mechanisms, this metal-phenolic nanoalgaecide provides a nanoenabled solution for controlling harmful algal blooms in hydroponics to advance food production.
科研通智能强力驱动
Strongly Powered by AbleSci AI