A novel deep learning algorithm applied to machine vision inspection for surface defects of injection moulded products

人工智能 机器视觉 计算机科学 算法 目视检查 自动X射线检查 初始化 深度学习 特征(语言学) 聚类分析 机器学习 光学(聚焦) 自动光学检测 过程(计算) 计算机视觉 图像处理 图像(数学) 语言学 哲学 物理 光学 程序设计语言 操作系统
作者
Haipeng Fan,Zhongjun Qiu
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:4
标识
DOI:10.1088/1361-6501/ad1c4c
摘要

Abstract In modern industry, the surface defect inspection of injection moulded products is crucial for controlling product quality and optimizing the manufacturing process. With the development of optical measurement and computer technology, machine vision inspection methods have been widely adopted instead of manual inspection. However, current machine vision inspection methods are difficult to simultaneously ensure the accuracy and efficiency of surface defect inspection of injection moulded products. Considering this problem, a novel deep learning algorithm applied to machine vision inspection for surface defects of injection moulded products is proposed. To train and evaluate the proposed deep learning algorithm, an image acquisition platform is established and the dataset of surface defects in moulded products is obtained. In the proposed deep learning algorithm, reparameterization-based convolution modules are employed for feature extraction and feature fusion. A median iterative clustering algorithm based on hierarchical clustering initialization is proposed to obtain prior anchors that are highly matched with the actual distribution of defect sizes. A novel Focus-Entire Union over Covering (Focus-EUoC) loss function is utilized for bounding box regression. On these bases, the proposed deep learning algorithm applied to machine vision inspection is evaluated on the dataset of surface defects in moulded products. The experimental results indicate that compared to the traditional inspection algorithms and other deep learning algorithms currently used in machine vision inspection, the proposed deep learning algorithm exhibits superior inspection accuracy and inspection efficiency on the acquired dataset. The inspection precision reaches 0.964, the inspection recall reaches 0.955, and the inference time for each subgraph is only 6.1ms, confirming its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
晋姝完成签到,获得积分10
1秒前
开开发布了新的文献求助10
1秒前
2秒前
靓仔xxx完成签到 ,获得积分10
2秒前
小熊发布了新的文献求助10
3秒前
3秒前
4秒前
丘比特应助稳中的豆沙包采纳,获得10
5秒前
棠真发布了新的文献求助10
5秒前
6秒前
6秒前
zpctx应助安静的尔岚采纳,获得20
7秒前
金戈完成签到,获得积分10
8秒前
shanage发布了新的文献求助10
8秒前
ximo应助lhui采纳,获得30
8秒前
Jacky77发布了新的文献求助10
8秒前
lin发布了新的文献求助10
9秒前
洋洋晓晓完成签到 ,获得积分10
9秒前
9秒前
9秒前
cai完成签到,获得积分10
10秒前
10秒前
11秒前
标致雁发布了新的文献求助10
11秒前
11秒前
晕云完成签到 ,获得积分10
11秒前
miao完成签到,获得积分10
12秒前
所所应助小米采纳,获得10
13秒前
量子星尘发布了新的文献求助10
15秒前
enen发布了新的文献求助10
15秒前
T拐拐发布了新的文献求助10
15秒前
TGGXS完成签到,获得积分10
15秒前
15秒前
Eve完成签到 ,获得积分10
17秒前
上官若男应助开开采纳,获得10
18秒前
标致雁完成签到,获得积分10
19秒前
22秒前
Jacky77完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483942
求助须知:如何正确求助?哪些是违规求助? 4584399
关于积分的说明 14397356
捐赠科研通 4514299
什么是DOI,文献DOI怎么找? 2473912
邀请新用户注册赠送积分活动 1459930
关于科研通互助平台的介绍 1433260