SeisCLIP: A Seismology Foundation Model Pre-Trained by Multimodal Data for Multipurpose Seismic Feature Extraction

计算机科学 基础(证据) 人工智能 地质学 特征提取 萃取(化学) 特征(语言学) 地震学 模式识别(心理学) 遥感 历史 色谱法 考古 哲学 语言学 化学
作者
Xu Si,Xinming Wu,Hanlin Sheng,Jun Zhu,Zefeng Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:20
标识
DOI:10.1109/tgrs.2024.3354456
摘要

In seismology, while training a specific deep learning model for each task is common, it often faces challenges such as the scarcity of labeled data and limited regional generalization. Addressing these issues, we introduce SeisCLIP: a foundation model for seismology, leveraging contrastive learning during pre-training on multi-modal data of seismic waveform spectra and the corresponding local and global event information. SeisCLIP consists of a transformer-based spectrum encoder and an MLP-based information encoder that are jointly pre-trained on massive data. During pre-training, contrastive learning aims to enhance representations by training two encoders to bring corresponding waveform spectra and event information closer in the feature space, while distancing uncorrelated pairs. Remarkably, the pre-trained spectrum encoder offers versatile features, enabling its application across diverse tasks and regions. Thus, it requires only modest datasets for fine-tuning to specific downstream tasks. Our evaluations demonstrate SeisCLIP's superior performance over baseline methods in tasks like event classification, localization, and focal mechanism analysis, even when using distinct datasets from various regions. In essence, SeisCLIP emerges as a promising foundational model for seismology, potentially revolutionizing foundation-model-based research in the domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zhaoyuemeng完成签到 ,获得积分10
2秒前
3秒前
4秒前
4秒前
陈伟杰完成签到,获得积分10
4秒前
现实的鹏飞完成签到,获得积分20
4秒前
5秒前
swq完成签到,获得积分10
6秒前
渣渣发布了新的文献求助30
8秒前
cc完成签到,获得积分10
10秒前
浅忆晨曦发布了新的文献求助10
10秒前
黄响响完成签到,获得积分10
11秒前
传奇3应助Ashley采纳,获得10
11秒前
hkym应助hml123采纳,获得10
13秒前
难过水蜜桃完成签到,获得积分10
14秒前
14秒前
酷炫的尔丝完成签到 ,获得积分10
15秒前
慕青应助动感光波采纳,获得20
15秒前
伍襟傧完成签到,获得积分10
15秒前
北挽完成签到 ,获得积分10
16秒前
16秒前
16秒前
Tourist应助科研通管家采纳,获得10
17秒前
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
豆包完成签到,获得积分10
17秒前
文静应助科研通管家采纳,获得20
17秒前
dada完成签到,获得积分10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493