SGAD-GAN: Simultaneous Generation and Anomaly Detection for time-series sensor data with Generative Adversarial Networks

异常检测 鉴别器 计算机科学 异常(物理) 一般化 探测器 数据挖掘 断层(地质) 时间序列 人工智能 系列(地层学) 模式识别(心理学) 机器学习 数学 电信 数学分析 古生物学 物理 地震学 地质学 生物 凝聚态物理
作者
Penghui Zhao,Zhongjun Ding,Yang Li,Xiaohan Zhang,Yuanqi Zhao,Hongjun Wang,Yang Yang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:210: 111141-111141 被引量:2
标识
DOI:10.1016/j.ymssp.2024.111141
摘要

In recent years, mechanical sensor data anomaly detection has gained much attention in the machine learning and mechanical fault warning fields. Limited by the fact that there is far less anomalous data available for analysis than normal data, many machine learning methods fail to perform excellent detection results. In this paper, we propose a novel Simultaneous Generation and Anomaly Detection with Generative Adversarial Networks (SGAD-GAN) framework to tackle the challenge of anomaly detection under imbalanced datasets. In our framework, the generators accomplish transfer between sensor signals while synthesizing realistic data. In addition to the regular discriminators for identifying the authenticity of samples, we design a classification discriminator to facilitate data synthesis in the direction benefitting anomaly detection, which is trained to act as an anomaly detector in an identical way as other discriminators. We conduct extensive data synthesis and anomaly detection experiments on Hydraulic System Sensor (HSS) data from the Jiaolong deep-sea manned submersible, and show the generalization ability of our approach to different application domains on the public dataset KDDCUP99. The experimental results demonstrate that our proposed algorithm outperforms several state-of-the-art data augmentation and anomaly detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助zhouleiwang采纳,获得10
1秒前
爱学习发布了新的文献求助10
1秒前
2秒前
Bake完成签到,获得积分10
2秒前
999999发布了新的文献求助10
2秒前
风中的文龙完成签到,获得积分10
3秒前
zzzz给zzzz的求助进行了留言
4秒前
4秒前
7秒前
7秒前
A市觅食高手完成签到,获得积分10
7秒前
8秒前
9秒前
CodeCraft应助爱学习的楠采纳,获得10
10秒前
科研通AI5应助张皓123采纳,获得10
10秒前
万能图书馆应助优雅含灵采纳,获得10
11秒前
11秒前
12秒前
来日可追发布了新的文献求助10
12秒前
牛牛牛完成签到,获得积分10
12秒前
Avvei发布了新的文献求助10
12秒前
单于天宇发布了新的文献求助30
13秒前
深情安青应助如意草丛采纳,获得10
14秒前
14秒前
14秒前
14秒前
evak发布了新的文献求助10
14秒前
sxqqq应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
14秒前
Akim应助科研通管家采纳,获得10
14秒前
zgt01应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
15秒前
zgt01应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791796
求助须知:如何正确求助?哪些是违规求助? 3336103
关于积分的说明 10278863
捐赠科研通 3052741
什么是DOI,文献DOI怎么找? 1675319
邀请新用户注册赠送积分活动 803360
科研通“疑难数据库(出版商)”最低求助积分说明 761178