MSleepNet: A Semi-Supervision-Based Multiview Hybrid Neural Network for Simultaneous Sleep Arousal and Sleep Stage Detection

计算机科学 睡眠阶段 人工智能 人工神经网络 睡眠(系统调用) 唤醒 特征提取 领域知识 模式识别(心理学) 脑电图 多导睡眠图 机器学习 特征(语言学) 反向传播 语音识别 心理学 神经科学 语言学 哲学 操作系统
作者
Hongmei Liu,Haibo Zhang,Baozhu Li,Xinge Yu,Yuan Zhang,Thomas Penzel
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-9 被引量:6
标识
DOI:10.1109/tim.2023.3348898
摘要

The complexity of sleep disorder diagnosis continuously increases the clinical requirement for simultaneous measurement of sleep arousal and sleep stage, which, however, has not received enough attention from engineering scholars. To the best of our knowledge, all previous machine learning-based detection methods use the single view mechanism to identify either sleep arousal or sleep stage. In this article, a multiview hybrid neural network with semi-supervised learning (SSL), named as MSleepNet, is proposed for simultaneous sleep arousal and sleep stage detection. In particular, the features of single-channel electroencephalography (EEG) signal from both the time domain and frequency domain are extracted by the improved residual backbone network. Then, an attention mechanism is introduced to enhance the feature recognition ability in the frequency domain. A multitask classification loss function is also designed to synchronously consider the correlation between sleep arousal and sleep stage. In the classification part of the network, the supervised loss and semi-supervised loss for each task are effectively combined to alleviate the data imbalance problem and improve the classification accuracy. Overnight polysomnographic recordings from two public datasets (sleep heart health study (SHHS), $n=200$ and Physio2018, $n=100$ ) and one dataset from a local clinic ( $n=60$ ) were applied to validate MSleepNet. Experimental results on Physio2018 dataset demonstrate that MSleepNet achieves an overall accuracy of 0.78 and $F1$ score of 0.73 for sleep staging, and area under the precision-recall curve (AUPRC) of 0.39 and an area under the receiver operating characteristic curve (AUROC) of 0.75 for sleep arousal detection. Therefore, MSleepNet framework based on multiview hybrid neural network has shown its potential in intelligent sleep monitory for synchronizing sleep arousal and sleep stage measurement with only very limited labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tyy发布了新的文献求助10
刚刚
yy完成签到,获得积分10
1秒前
tsukinineko完成签到,获得积分10
1秒前
NICAI应助zty采纳,获得30
1秒前
柔弱山柳关注了科研通微信公众号
1秒前
2秒前
2秒前
Honor完成签到 ,获得积分20
2秒前
青青完成签到,获得积分10
3秒前
糯米种子完成签到,获得积分10
4秒前
6秒前
jinyu发布了新的文献求助10
7秒前
学习学习学习完成签到,获得积分10
7秒前
zzzzz发布了新的文献求助10
7秒前
izumi完成签到,获得积分10
8秒前
8秒前
8秒前
Sylvia发布了新的文献求助10
10秒前
izumi发布了新的文献求助10
12秒前
圆滚滚的大肥猫关注了科研通微信公众号
13秒前
虫二发布了新的文献求助10
13秒前
打打应助勤恳的小笼包采纳,获得10
14秒前
科研助手6应助xxx采纳,获得10
15秒前
16秒前
yes完成签到 ,获得积分10
16秒前
奋斗的友儿完成签到,获得积分10
17秒前
花生完成签到 ,获得积分10
22秒前
23秒前
23秒前
ewyzero关注了科研通微信公众号
24秒前
BOYA完成签到,获得积分10
27秒前
zzzzz完成签到,获得积分10
30秒前
32秒前
缤月完成签到,获得积分10
34秒前
英姑应助火火火采纳,获得30
36秒前
琦琦发布了新的文献求助10
36秒前
36秒前
小二郎应助Wonder罗采纳,获得10
36秒前
慕青应助fandan采纳,获得10
37秒前
illuminate完成签到 ,获得积分10
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812524
求助须知:如何正确求助?哪些是违规求助? 3357072
关于积分的说明 10385087
捐赠科研通 3074263
什么是DOI,文献DOI怎么找? 1688684
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986