MSleepNet: A Semi-Supervision-Based Multiview Hybrid Neural Network for Simultaneous Sleep Arousal and Sleep Stage Detection

计算机科学 睡眠阶段 人工智能 人工神经网络 睡眠(系统调用) 唤醒 特征提取 领域知识 模式识别(心理学) 脑电图 多导睡眠图 机器学习 特征(语言学) 反向传播 语音识别 心理学 神经科学 语言学 哲学 操作系统
作者
Hongmei Liu,Haibo Zhang,Baozhu Li,Xinge Yu,Yuan Zhang,Thomas Penzel
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-9 被引量:12
标识
DOI:10.1109/tim.2023.3348898
摘要

The complexity of sleep disorder diagnosis continuously increases the clinical requirement for simultaneous measurement of sleep arousal and sleep stage, which, however, has not received enough attention from engineering scholars. To the best of our knowledge, all previous machine learning-based detection methods use the single view mechanism to identify either sleep arousal or sleep stage. In this article, a multiview hybrid neural network with semi-supervised learning (SSL), named as MSleepNet, is proposed for simultaneous sleep arousal and sleep stage detection. In particular, the features of single-channel electroencephalography (EEG) signal from both the time domain and frequency domain are extracted by the improved residual backbone network. Then, an attention mechanism is introduced to enhance the feature recognition ability in the frequency domain. A multitask classification loss function is also designed to synchronously consider the correlation between sleep arousal and sleep stage. In the classification part of the network, the supervised loss and semi-supervised loss for each task are effectively combined to alleviate the data imbalance problem and improve the classification accuracy. Overnight polysomnographic recordings from two public datasets (sleep heart health study (SHHS), $n=200$ and Physio2018, $n=100$ ) and one dataset from a local clinic ( $n=60$ ) were applied to validate MSleepNet. Experimental results on Physio2018 dataset demonstrate that MSleepNet achieves an overall accuracy of 0.78 and $F1$ score of 0.73 for sleep staging, and area under the precision-recall curve (AUPRC) of 0.39 and an area under the receiver operating characteristic curve (AUROC) of 0.75 for sleep arousal detection. Therefore, MSleepNet framework based on multiview hybrid neural network has shown its potential in intelligent sleep monitory for synchronizing sleep arousal and sleep stage measurement with only very limited labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
linkman发布了新的文献求助10
1秒前
2秒前
一个西瓜切两半完成签到,获得积分20
2秒前
酷波er应助麻雀采纳,获得10
2秒前
曾经海莲完成签到,获得积分10
2秒前
3秒前
九bai发布了新的文献求助10
3秒前
炙热尔烟发布了新的文献求助10
4秒前
RE完成签到 ,获得积分10
6秒前
6秒前
哈哈完成签到 ,获得积分10
7秒前
李健应助康康采纳,获得10
8秒前
境屾完成签到,获得积分10
12秒前
Moto_Fang发布了新的文献求助10
13秒前
撼vv完成签到 ,获得积分10
15秒前
16秒前
小夏完成签到,获得积分10
16秒前
入袍完成签到,获得积分10
18秒前
21秒前
小爪冰凉发布了新的文献求助10
22秒前
社会主义接班人完成签到 ,获得积分10
23秒前
Bacon完成签到,获得积分10
24秒前
默默的幻灵关注了科研通微信公众号
25秒前
纯真的伟诚完成签到 ,获得积分10
26秒前
Aero发布了新的文献求助10
27秒前
Dali应助cenghao采纳,获得10
28秒前
Alp发布了新的文献求助10
29秒前
spy完成签到,获得积分10
29秒前
洁净的丹翠完成签到,获得积分10
29秒前
ekko完成签到,获得积分10
30秒前
30秒前
31秒前
小巧的不评完成签到 ,获得积分10
32秒前
Febrine0502完成签到,获得积分10
32秒前
加油小羊发布了新的文献求助30
33秒前
33秒前
34秒前
34秒前
英吉利25发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600631
求助须知:如何正确求助?哪些是违规求助? 4686248
关于积分的说明 14842519
捐赠科研通 4677270
什么是DOI,文献DOI怎么找? 2538898
邀请新用户注册赠送积分活动 1505830
关于科研通互助平台的介绍 1471207