Clinico-biological-radiomics (CBR) based machine learning for improving the diagnostic accuracy of FDG-PET false-positive lymph nodes in lung cancer

无线电技术 医学 列线图 正电子发射断层摄影术 肺癌 淋巴结 核医学 纵隔淋巴结 放射科 机器学习 癌症 人工智能 病理 计算机科学 肿瘤科 内科学 转移
作者
Caiyue Ren,Fuquan Zhang,Jiangang Zhang,Shaoli Song,Yun Sun,Jingyi Cheng
出处
期刊:European Journal of Medical Research [Springer Nature]
卷期号:28 (1): 554-554 被引量:9
标识
DOI:10.1186/s40001-023-01497-6
摘要

Abstract Background The main problem of positron emission tomography/computed tomography (PET/CT) for lymph node (LN) staging is the high false positive rate (FPR). Thus, we aimed to explore a clinico-biological-radiomics (CBR) model via machine learning (ML) to reduce FPR and improve the accuracy for predicting the hypermetabolic mediastinal–hilar LNs status in lung cancer than conventional PET/CT. Methods A total of 260 lung cancer patients with hypermetabolic mediastinal–hilar LNs (SUVmax ≥ 2.5) were retrospectively reviewed. Patients were treated with surgery with systematic LN resection and pathologically divided into the LN negative (LN-) and positive (LN +) groups, and randomly assigned into the training ( n = 182) and test ( n = 78) sets. Preoperative CBR dataset containing 1738 multi-scale features was constructed for all patients. Prediction models for hypermetabolic LNs status were developed using the features selected by the supervised ML algorithms, and evaluated using the classical diagnostic indicators. Then, a nomogram was developed based on the model with the highest area under the curve (AUC) and the lowest FPR, and validated by the calibration plots. Results In total, 109 LN− and 151 LN + patients were enrolled in this study. 6 independent prediction models were developed to differentiate LN− from LN + patients using the selected features from clinico-biological-image dataset, radiomics dataset, and their combined CBR dataset, respectively. The DeLong test showed that the CBR Model containing all-scale features held the highest predictive efficiency and the lowest FPR among all of established models ( p < 0.05) in both the training and test sets (AUCs of 0.90 and 0.89, FPRs of 12.82% and 6.45%, respectively) ( p < 0.05). The quantitative nomogram based on CBR Model was validated to have a good consistency with actual observations. Conclusion This study presents an integrated CBR nomogram that can further reduce the FPR and improve the accuracy of hypermetabolic mediastinal–hilar LNs evaluation than conventional PET/CT in lung cancer, thereby greatly reducing the risk of overestimation and assisting for precision treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助小狮子采纳,获得10
刚刚
刚刚
何在发布了新的文献求助10
刚刚
在雨里思考完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
yin印完成签到 ,获得积分10
6秒前
科研通AI6应助LB采纳,获得10
6秒前
姜姜姜完成签到,获得积分10
6秒前
阿六儿发布了新的文献求助10
6秒前
7秒前
黄玉发布了新的文献求助10
7秒前
8秒前
lin发布了新的文献求助10
9秒前
熠熠发布了新的文献求助10
11秒前
12秒前
12秒前
xiaohuang完成签到,获得积分10
12秒前
14秒前
16秒前
0123完成签到,获得积分10
16秒前
喵呜发布了新的文献求助30
16秒前
16秒前
结实芝麻完成签到 ,获得积分10
17秒前
17秒前
19秒前
小马甲应助xiaohuang采纳,获得10
20秒前
谢123完成签到 ,获得积分10
21秒前
情怀应助lucky采纳,获得10
21秒前
田野发布了新的文献求助10
21秒前
23秒前
23秒前
Bubble发布了新的文献求助10
23秒前
黄玉完成签到,获得积分20
26秒前
26秒前
安静翎发布了新的文献求助10
26秒前
mzr完成签到,获得积分10
26秒前
喵呜完成签到,获得积分10
27秒前
田野完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5363730
求助须知:如何正确求助?哪些是违规求助? 4493243
关于积分的说明 13989601
捐赠科研通 4396864
什么是DOI,文献DOI怎么找? 2415180
邀请新用户注册赠送积分活动 1407898
关于科研通互助平台的介绍 1382747