Investigation of the combination of intratumoral and peritumoral radiomic signatures for predicting epidermal growth factor receptor mutation in lung adenocarcinoma

接收机工作特性 腺癌 表皮生长因子受体 逻辑回归 医学 支持向量机 肿瘤科 核医学 病理 人工智能 内科学 癌症 计算机科学
作者
Yusuke Kawazoe,Takehiro Shiinoki,K. Fujimoto,Yuki Yuasa,Tsunahiko Hirano,Kazuto Matsunaga,Hidekazu Tanaka
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:24 (6) 被引量:9
标识
DOI:10.1002/acm2.13980
摘要

We investigated optimal peritumoral size and constructed predictive models for epidermal growth factor receptor (EGFR) mutation.A total of 164 patients with lung adenocarcinoma were retrospectively analyzed. Radiomic signatures for the intratumoral region and combinations of intratumoral and peritumoral regions (3, 5, and 7 mm) from computed tomography images were extracted using analysis of variance and least absolute shrinkage. The optimal peritumoral region was determined by radiomics score (rad-score). Intratumoral radiomic signatures with clinical features (IRS) were used to construct predictive models for EGFR mutation. Combinations of intratumoral and 3, 5, or 7 mm-peritumoral signatures with clinical features (IPRS3, IPRS5, and IPRS7, respectively) were also used to construct predictive models. Support vector machine (SVM), logistic regression (LR), and LightGBM models with five-fold cross-validation were constructed, and the receiver operating characteristics were evaluated. Area under the curve (AUC) of the training and test cohorts values were calculated. Brier scores (BS) and decision curve analysis (DCA) were used to evaluate the predictive models.The AUC values of the SVM, LR, and LightGBM models derived from IRS were 0.783 (95% confidence interval: 0.602-0.956), 0.789 (0.654-0.927), and 0.735 (0.613-0.958) for training, and 0.791 (0.641-0.920), 0.781 (0.538-0.930), and 0.734 (0.538-0.930) for test cohort, respectively. Rad-score confirmed that the 3 mm-peritumoral size was optimal (IPRS3), and AUCs values of SVM, LR, and lightGBM models derived from IPRS3 were 0.831 (0.666-0.984), 0.804 (0.622-0.908), and 0.769 (0.628-0.921) for training and 0.765 (0.644-0.921), 0.783 (0.583-0.921), and 0.796 (0.583-0.949) for test cohort, respectively. The BS and DCA of the LR and LightGBM models derived from IPRS3 were better than those from IRS.Accordingly, the combination of intratumoral and 3 mm-peritumoral radiomic signatures may be helpful for predicting EGFR mutations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
津津乐道完成签到,获得积分10
1秒前
朱梦阁发布了新的文献求助10
2秒前
敷斩完成签到,获得积分20
2秒前
Disguise完成签到 ,获得积分10
2秒前
山神厘子完成签到,获得积分10
2秒前
3秒前
wrahb完成签到,获得积分10
3秒前
殷勤的灵竹完成签到,获得积分20
4秒前
务实可愁发布了新的文献求助10
4秒前
噜噜噜噜噜完成签到,获得积分10
4秒前
4秒前
JN完成签到,获得积分10
5秒前
lesyeuxdexx完成签到 ,获得积分10
6秒前
星辰大海应助虚幻心锁采纳,获得80
6秒前
不羁的风完成签到 ,获得积分10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助30
8秒前
8秒前
jintian完成签到 ,获得积分10
9秒前
健壮荠完成签到,获得积分10
9秒前
9秒前
欣喜以彤应助神羊采纳,获得10
10秒前
冷酷的红酒完成签到,获得积分20
11秒前
111发布了新的文献求助10
11秒前
爱吃冬瓜完成签到,获得积分10
11秒前
光亮灯泡发布了新的文献求助10
11秒前
脑洞疼应助殷勤的灵竹采纳,获得10
12秒前
孤独含蕾完成签到 ,获得积分10
12秒前
leidu完成签到,获得积分10
12秒前
单纯的忆安完成签到,获得积分10
12秒前
13秒前
YMY发布了新的文献求助10
13秒前
小赞完成签到,获得积分10
13秒前
14秒前
朱梦阁完成签到,获得积分20
14秒前
ETJ发布了新的文献求助10
14秒前
14秒前
大河_农经完成签到,获得积分10
15秒前
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4243645
求助须知:如何正确求助?哪些是违规求助? 3777117
关于积分的说明 11857973
捐赠科研通 3431443
什么是DOI,文献DOI怎么找? 1883121
邀请新用户注册赠送积分活动 935043
科研通“疑难数据库(出版商)”最低求助积分说明 841531