Urban Tree Classification Based on Object-Oriented Approach and Random Forest Algorithm Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery

随机森林 计算机科学 多光谱图像 人工智能 支持向量机 模式识别(心理学) 科恩卡帕 遥感 分类器(UML) 分割 地理 机器学习
作者
Qian Guo,Jian Zhang,Shijie Guo,Zhangxi Ye,Hui Deng,Xiaolong Hou,Houxi Zhang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (16): 3885-3885 被引量:67
标识
DOI:10.3390/rs14163885
摘要

Timely and accurate information on the spatial distribution of urban trees is critical for sustainable urban development, management and planning. Compared with satellite-based remote sensing, Unmanned Aerial Vehicle (UAV) remote sensing has a higher spatial and temporal resolution, which provides a new method for the accurate identification of urban trees. In this study, we aim to establish an efficient and practical method for urban tree identification by combining an object-oriented approach and a random forest algorithm using UAV multispectral images. Firstly, the image was segmented by a multi-scale segmentation algorithm based on the scale determined by the Estimation of Scale Parameter 2 (ESP2) tool and visual discrimination. Secondly, spectral features, index features, texture features and geometric features were combined to form schemes S1–S8, and S9, consisting of features selected by the recursive feature elimination (RFE) method. Finally, the classification of urban trees was performed based on the nine schemes using the random forest (RF), support vector machine (SVM) and k-nearest neighbor (KNN) classifiers, respectively. The results show that the RF classifier performs better than SVM and KNN, and the RF achieves the highest accuracy in S9, with an overall accuracy (OA) of 91.89% and a Kappa coefficient (Kappa) of 0.91. This study reveals that geometric features have a negative impact on classification, and the other three types have a positive impact. The feature importance ranking map shows that spectral features are the most important type of features, followed by index features, texture features and geometric features. Most tree species have a high classification accuracy, but the accuracy of Camphor and Cinnamomum Japonicum is much lower than that of other tree species, suggesting that the features selected in this study cannot accurately distinguish these two tree species, so it is necessary to add features such as height in the future to improve the accuracy. This study illustrates that the combination of an object-oriented approach and the RF classifier based on UAV multispectral images provides an efficient and powerful method for urban tree classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助zzx采纳,获得10
1秒前
聪仔发布了新的文献求助10
1秒前
1秒前
1秒前
miles完成签到,获得积分10
2秒前
3秒前
gfhdf完成签到,获得积分10
5秒前
5秒前
6秒前
丘比特应助chris采纳,获得10
6秒前
洪对对发布了新的文献求助10
6秒前
7秒前
7秒前
今后应助米热采纳,获得10
7秒前
8秒前
8秒前
HITvagary完成签到,获得积分10
8秒前
陌上尘发布了新的文献求助10
8秒前
李爱国应助蕯匿采纳,获得10
9秒前
9秒前
郝冥发布了新的文献求助10
10秒前
hkh发布了新的文献求助10
11秒前
小杨发布了新的文献求助10
12秒前
zzx发布了新的文献求助10
12秒前
123发布了新的文献求助10
12秒前
12秒前
houxufeng完成签到 ,获得积分10
13秒前
xianhe发布了新的文献求助10
14秒前
CodeCraft应助哈理老萝卜采纳,获得10
14秒前
16秒前
Cher1she发布了新的文献求助10
17秒前
热血马儿完成签到,获得积分10
17秒前
chris发布了新的文献求助10
18秒前
如意的书白完成签到,获得积分20
19秒前
小航完成签到,获得积分10
19秒前
21秒前
于凡完成签到,获得积分10
21秒前
23秒前
24秒前
25秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838497
求助须知:如何正确求助?哪些是违规求助? 3380812
关于积分的说明 10516014
捐赠科研通 3100441
什么是DOI,文献DOI怎么找? 1707496
邀请新用户注册赠送积分活动 821784
科研通“疑难数据库(出版商)”最低求助积分说明 772947