A novel method based on deep learning algorithms for material deformation rate detection

计算机科学 算法 深度学习 人工智能 变形(气象学) 材料科学 复合材料
作者
Selim Özdem,İlhami Muharrem Orak
出处
期刊:Journal of Intelligent Manufacturing [Springer Nature]
卷期号:36 (5): 3249-3270 被引量:8
标识
DOI:10.1007/s10845-024-02409-z
摘要

Abstract Given the significant influence of microstructural characteristics on a material’s mechanical, physical, and chemical properties, this study posits that the deformation rate of structural steel S235-JR can be precisely determined by analyzing changes in its microstructure. Utilizing advanced artificial intelligence techniques, microstructure images of S235-JR were systematically analyzed to establish a correlation with the material’s lifespan. The steel was categorized into five classes and subjected to varying deformation rates through laboratory tensile tests. Post-deformation, the specimens underwent metallographic procedures to obtain microstructure images via an light optical microscope (LOM). A dataset comprising 10000 images was introduced and validated using K-Fold cross-validation. This research utilized deep learning (DL) architectures ResNet50, ResNet101, ResNet152, VGG16, and VGG19 through transfer learning to train and classify images containing deformation information. The effectiveness of these models was meticulously compared using a suite of metrics including Accuracy, F1-score, Recall, and Precision to determine their classification success. The classification accuracy was compared across the test data, with ResNet50 achieving the highest accuracy of 98.45%. This study contributes a five-class dataset of labeled images to the literature, offering a new resource for future research in material science and engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助xiaoyudian采纳,获得10
刚刚
finish完成签到,获得积分10
刚刚
无心的星月完成签到 ,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助30
3秒前
527完成签到,获得积分10
3秒前
一条帅龙龙完成签到,获得积分20
4秒前
温酒叙人生完成签到,获得积分20
5秒前
杜祖盛发布了新的文献求助10
5秒前
bk发布了新的文献求助10
6秒前
8秒前
11秒前
12秒前
杜祖盛完成签到,获得积分10
12秒前
BowieHuang应助雪山飞龙采纳,获得10
12秒前
13秒前
Edward发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
是阿瑾呀完成签到 ,获得积分10
13秒前
14秒前
14秒前
科研通AI2S应助mengyao采纳,获得10
15秒前
16秒前
18秒前
水博士发布了新的文献求助20
19秒前
华仔应助简单项链采纳,获得10
20秒前
未来之星发布了新的文献求助10
20秒前
夏紫儿发布了新的文献求助10
20秒前
21秒前
量子星尘发布了新的文献求助30
21秒前
24秒前
洛森发布了新的文献求助10
24秒前
26秒前
27秒前
lianglimay发布了新的文献求助10
27秒前
28秒前
漂亮的千万完成签到,获得积分10
28秒前
28秒前
yznfly应助li采纳,获得20
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786859
求助须知:如何正确求助?哪些是违规求助? 5696278
关于积分的说明 15470826
捐赠科研通 4915556
什么是DOI,文献DOI怎么找? 2645833
邀请新用户注册赠送积分活动 1593523
关于科研通互助平台的介绍 1547863