清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Design and optimization for the separation of xylene isomers with a novel double extractants-based extractive distillation

萃取蒸馏 共沸蒸馏 二甲苯 间歇精馏 化学 蒸馏 色谱法 沸点 溶剂 分离过程 原材料 残液 工艺工程 萃取(化学) 有机化学 分馏 工程类
作者
Fangkun Zhang,Yunlong Wang,Baoming Shan,Peizhe Cui,Yinglong Wang,Zhaoyou Zhu,Qilei Xu
出处
期刊:Journal of Industrial and Engineering Chemistry [Elsevier BV]
卷期号:139: 502-513 被引量:8
标识
DOI:10.1016/j.jiec.2024.05.027
摘要

Xene is a crucial chemical raw material, serving as a synthetic monomer and solvent extensively employed in coating, medicine, rubber and other industries. It contains of three isomers: o-xylene (OX), m-xylene (MX), and p-xylene (PX), their separation is considered a worldwide challenge due to their extremely close boiling points. A novel extractive distillation based on double extractants is first proposed to separate these isomers in this paper, while it was considered impractical to separate these isomers by distillation technology alone in the past. Through the analysis of residual curve and extractant screening, two potential solvents, i.e., N-Methylpyrrolidone (NMP) and Tetramethylene sulfone (Sul) were used as extractants, and then the separation sequences were designed and optimized. The extractive distillation processes were optimized by sequential iterative method according to the minimum total annual cost (TAC), and the best separation sequence and process parameters were determined. For comparison, it was found that the optimized double extractant-based extractive distillation (DEED) process has the best economic performance with TAC of 5.72*106$, and the energy consumption was greatly reduced by 41.2% compared to the single extractant-based extractive distillation (SEED). This article provides a new perspective on energy-efficient distillation technology for industrial xylene separation and purification production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
zlh发布了新的文献求助10
9秒前
17秒前
量子星尘发布了新的文献求助10
20秒前
幽默的太阳完成签到 ,获得积分10
25秒前
26秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
慕青应助gszy1975采纳,获得10
2分钟前
2分钟前
滕皓轩完成签到 ,获得积分20
2分钟前
3分钟前
zxcvbnm完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
4分钟前
丘比特应助伴妳长路采纳,获得20
4分钟前
菠萝包完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
直率的笑翠完成签到 ,获得积分10
4分钟前
6分钟前
不信人间有白头完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
gszy1975发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
星纪完成签到 ,获得积分10
7分钟前
zhangjianzeng完成签到 ,获得积分10
8分钟前
8分钟前
搜集达人应助科研通管家采纳,获得10
9分钟前
lorentzh完成签到,获得积分10
10分钟前
10分钟前
Fu发布了新的文献求助10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4695539
求助须知:如何正确求助?哪些是违规求助? 4065450
关于积分的说明 12569107
捐赠科研通 3764625
什么是DOI,文献DOI怎么找? 2079119
邀请新用户注册赠送积分活动 1107401
科研通“疑难数据库(出版商)”最低求助积分说明 985700