Bioinformatic prediction and experimental validation of RiPP recognition elements

计算生物学 领域(数学分析) 化学 生物化学 组合化学 计算机科学 生物 数学 数学分析
作者
Kyle E. Shelton,Douglas A. Mitchell
出处
期刊:Methods in Enzymology [Academic Press]
卷期号:: 191-233 被引量:7
标识
DOI:10.1016/bs.mie.2022.08.050
摘要

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a family of natural products for which discovery efforts have rapidly grown over the past decade. There are currently 38 known RiPP classes encoded by prokaryotes. Half of the prokaryotic RiPP classes include a protein domain called the RiPP Recognition Element (RRE) for successful installation of post-translational modifications on a RiPP precursor peptide. In most cases, the RRE domain binds to the N-terminal “leader” region of the precursor peptide, facilitating enzymatic modification of the C-terminal “core” region. The prevalence of the RRE domain renders it a theoretically useful bioinformatic handle for class-independent RiPP discovery; however, first-in-class RiPPs have yet to be isolated and experimentally characterized using an RRE-centric strategy. Moreover, with most known RRE domains engaging their cognate precursor peptide(s) with high specificity and nanomolar affinity, evaluation of the residue-specific interactions that govern RRE:substrate complexation is a necessary first step to leveraging the RRE domain for various bioengineering applications. This chapter details protocols for developing custom bioinformatic models to predict and annotate RRE domains in a class-specific manner. Next, we outline methods for experimental validation of precursor peptide binding using fluorescence polarization binding assays and in vitro enzyme activity assays. We anticipate the methods herein will guide and enhance future critical analyses of the RRE domain, eventually enabling its future use as a customizable tool for molecular biology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到 ,获得积分10
刚刚
汤文敬完成签到,获得积分10
刚刚
机智半双完成签到,获得积分10
1秒前
1秒前
wlx完成签到,获得积分10
2秒前
Sweet发布了新的文献求助30
2秒前
2秒前
爆米花应助2765604466采纳,获得10
2秒前
cc关闭了cc文献求助
3秒前
Rangi发布了新的文献求助10
3秒前
yangz发布了新的文献求助10
3秒前
缓慢冷风完成签到,获得积分10
3秒前
kyt17878完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
不安的墨镜完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
Dengjia发布了新的文献求助10
6秒前
嘿嘿发布了新的文献求助10
6秒前
6秒前
爱你沛沛完成签到 ,获得积分10
6秒前
火星上的海亦完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
Owen应助七七采纳,获得10
9秒前
白江虎发布了新的文献求助10
9秒前
???完成签到,获得积分10
10秒前
赤恩发布了新的文献求助10
10秒前
机智半双发布了新的文献求助10
11秒前
Ava应助Dolphin采纳,获得10
11秒前
11秒前
yznfly应助科研通管家采纳,获得150
11秒前
浮游应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535968
求助须知:如何正确求助?哪些是违规求助? 4623760
关于积分的说明 14588969
捐赠科研通 4564340
什么是DOI,文献DOI怎么找? 2501618
邀请新用户注册赠送积分活动 1480473
关于科研通互助平台的介绍 1451779