已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pneumothorax segmentation of chest X-rays using improved UNet++

气胸 分割 计算机科学 交叉熵 人工智能 图像分割 编码器 模式识别(心理学) 医学 放射科 操作系统
作者
Xing Zhang,Zhiqin Liu,Qingfeng Wang,Bo Chen
标识
DOI:10.1109/mlise57402.2022.00013
摘要

Pneumothorax is a life-threatening medical emergency that results in a state of pneumoperitoneum in the chest due to the entry of gas into the pleural cavity. Pneumothorax usually overlaps with tissues such as ribs and clavicles, which are usually difficult to identify on chest X-rays and have a large clinical underdiagnosis. In recent years, breakthroughs have been achieved in many medical image segmentation tasks using deep learning methods. However, the blurred boundary and tissue overlap in chest X-ray pneumothorax segmentation make it difficult for many algorithms to achieve better results in pneumothorax segmentation. To address these problems, we propose a deep learning network ResNeSt-UNet++ based on UNet++ and ResNeSt. In detail, ResNeSt-UNet++ designs a context-aware feature encoder with residual blocks to extract multi-scale features and introduces hybrid jump paths to obtain and fuse image features at different scales. Moreover, the ResNeSt- UNet++ network uses spatial and channel squeezes and excitation (scSE) modules as decoders to refine. Further, ResNeSt-UNet++ defines a loss function based on Binary Cross Entropy to train the network. The Dice similarity coefficient values and IOUs obtained using this method on the X-ray pneumothorax dataset are 88.31% and 83.1%, respectively, which achieve better performance in pneumothorax segmentation compared with networks such as traditional FPN and UNet++. The experimental results show that this method can segment X-ray pneumothorax with high accuracy and help doctors to provide a reference for accurate judgment of X-ray pneumothorax.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助害怕的板凳采纳,获得10
1秒前
GGGrigor完成签到,获得积分10
2秒前
空白格完成签到 ,获得积分10
3秒前
6秒前
DI完成签到 ,获得积分10
6秒前
7秒前
11秒前
11秒前
健忘无颜发布了新的文献求助10
11秒前
11秒前
DI关注了科研通微信公众号
11秒前
l0000完成签到,获得积分10
12秒前
故意的鞋垫完成签到 ,获得积分10
15秒前
迅捷海狸完成签到 ,获得积分20
16秒前
动人的向松完成签到 ,获得积分10
16秒前
wangli发布了新的文献求助10
16秒前
zheng发布了新的文献求助10
16秒前
20秒前
Criminology34完成签到,获得积分0
21秒前
健忘无颜完成签到,获得积分10
22秒前
在水一方应助干净的时光采纳,获得10
23秒前
小兔子乖乖完成签到 ,获得积分10
23秒前
宋宋不迷糊完成签到 ,获得积分10
28秒前
29秒前
29秒前
001026Z完成签到,获得积分10
29秒前
nPgA2o应助科研通管家采纳,获得10
29秒前
BowieHuang应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
BowieHuang应助科研通管家采纳,获得10
30秒前
852应助科研通管家采纳,获得10
30秒前
30秒前
31秒前
hbu123完成签到,获得积分10
31秒前
33秒前
34秒前
小蚂蚁完成签到,获得积分10
37秒前
clio完成签到,获得积分10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542978
求助须知:如何正确求助?哪些是违规求助? 4629095
关于积分的说明 14610815
捐赠科研通 4570377
什么是DOI,文献DOI怎么找? 2505716
邀请新用户注册赠送积分活动 1483039
关于科研通互助平台的介绍 1454361