A generalization performance study on the boosting radiotherapy dose calculation engine based on super-resolution

计算机科学 核医学 剂量体积直方图 放射治疗 放射治疗计划 医学 放射科
作者
Yewei Wang,Yaoying Liu,Yanlin Bai,Qichao Zhou,Shouping Xu,Xueying Pang
出处
期刊:Zeitschrift Fur Medizinische Physik [Elsevier BV]
标识
DOI:10.1016/j.zemedi.2022.10.006
摘要

During the radiation treatment planning process, one of the time-consuming procedures is the final high-resolution dose calculation, which obstacles the wide application of the emerging online adaptive radiotherapy techniques (OLART). There is an urgent desire for highly accurate and efficient dose calculation methods. This study aims to develop a dose super resolution-based deep learning model for fast and accurate dose prediction in clinical practice.A Multi-stage Dose Super-Resolution Network (MDSR Net) architecture with sparse masks module and multi-stage progressive dose distribution restoration method were developed to predict high-resolution dose distribution using low-resolution data. A total of 340 VMAT plans from different disease sites were used, among which 240 randomly selected nasopharyngeal, lung, and cervix cases were used for model training, and the remaining 60 cases from the same sites for model benchmark testing, and additional 40 cases from the unseen site (breast and rectum) was used for model generalizability evaluation. The clinical calculated dose with a grid size of 2 mm was used as baseline dose distribution. The input included the dose distribution with 4 mm grid size and CT images. The model performance was compared with HD U-Net and cubic interpolation methods using Dose-volume histograms (DVH) metrics and global gamma analysis with 1%/1 mm and 10% low dose threshold. The correlation between the prediction error and the dose, dose gradient, and CT values was also evaluated.The prediction errors of MDSR were 0.06-0.84% of Dmean indices, and the gamma passing rate was 83.1-91.0% on the benchmark testing dataset, and 0.02-1.03% and 71.3-90.3% for the generalization dataset respectively. The model performance was significantly higher than the HD U-Net and interpolation methods (p < 0.05). The mean errors of the MDSR model decreased (monotonously by 0.03-0.004%) with dose and increased (by 0.01-0.73%) with the dose gradient. There was no correlation between prediction errors and the CT values.The proposed MDSR model achieved good agreement with the baseline high-resolution dose distribution, with small prediction errors for DVH indices and high gamma passing rate for both seen and unseen sites, indicating a robust and generalizable dose prediction model. The model can provide fast and accurate high-resolution dose distribution for clinical dose calculation, particularly for the routine practice of OLART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
3秒前
5秒前
yyy完成签到,获得积分10
6秒前
完美世界应助Licyan采纳,获得10
6秒前
Wmmmmm完成签到,获得积分10
8秒前
9秒前
李泽发布了新的文献求助10
9秒前
Hermie完成签到,获得积分10
10秒前
肖圣凯发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
momo完成签到,获得积分10
13秒前
zc发布了新的文献求助10
13秒前
14秒前
ding应助vine采纳,获得10
15秒前
frost发布了新的文献求助10
15秒前
jimmy给jimmy的求助进行了留言
16秒前
16秒前
17秒前
深白发布了新的文献求助10
18秒前
yang完成签到,获得积分10
18秒前
xxx发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
WangSihu完成签到,获得积分10
21秒前
gengren163应助文静的采纳,获得50
21秒前
21秒前
Hello应助木鸽子采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
23秒前
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787714
求助须知:如何正确求助?哪些是违规求助? 3333335
关于积分的说明 10261246
捐赠科研通 3049024
什么是DOI,文献DOI怎么找? 1673399
邀请新用户注册赠送积分活动 801874
科研通“疑难数据库(出版商)”最低求助积分说明 760385