沃罗诺图
计算机科学
图形
镶嵌(计算机图形学)
接口(物质)
人工神经网络
蛋白质亚单位
构造(python库)
图形绘制
算法
生物系统
理论计算机科学
人工智能
数学
化学
计算机图形学(图像)
几何学
生物
计算机网络
并行计算
生物化学
基因
最大气泡压力法
气泡
作者
Kliment Olechnovič,Česlovas Venclovas
标识
DOI:10.1101/2023.04.19.537507
摘要
Abstract We present VoroIF-GNN, a novel single-model method for assessing inter-subunit interfaces in protein-protein complexes. Given a multimeric protein structural model, we derive interface contacts from the Voronoi tessellation of atomic balls, construct a graph of those contacts, and predict accuracy of every contact using an attention-based graph neural network. The contact-level predictions are then summarized to produce whole interface-level scores. VoroIF-GNN was blindly tested for its ability to estimate accuracy of protein complexes during CASP15 and showed strong performance in selecting the best multimeric model out of many. The method implementation is freely available at https://klimentolechnovic.github.io/voronota/expansion_js/ .
科研通智能强力驱动
Strongly Powered by AbleSci AI