亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-modal cross-attention network for Alzheimer’s disease diagnosis with multi-modality data

模态(人机交互) 神经影像学 计算机科学 模式 人工智能 情态动词 正电子发射断层摄影术 痴呆 磁共振成像 医学影像学 机器学习 自编码 模式识别(心理学) 深度学习 医学 放射科 疾病 神经科学 心理学 病理 社会学 化学 高分子化学 社会科学
作者
Jin Zhang,Xiaohai He,Luping Liu,Qingyan Cai,Honggang Chen,Linbo Qing
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:162: 107050-107050 被引量:47
标识
DOI:10.1016/j.compbiomed.2023.107050
摘要

Alzheimer's disease (AD) is a neurodegenerative disorder, the most common cause of dementia, so the accurate diagnosis of AD and its prodromal stage mild cognitive impairment (MCI) is significant. Recent studies have demonstrated that multiple neuroimaging and biological measures contain complementary information for diagnosis. Many existing multi-modal models based on deep learning simply concatenate each modality's features despite substantial differences in representation spaces. In this paper, we propose a novel multi-modal cross-attention AD diagnosis (MCAD) framework to learn the interaction between modalities for better playing their complementary roles for AD diagnosis with multi-modal data including structural magnetic resonance imaging (sMRI), fluorodeoxyglucose-positron emission tomography (FDG-PET) and cerebrospinal fluid (CSF) biomarkers. Specifically, the imaging and non-imaging representations are learned by the image encoder based on cascaded dilated convolutions and CSF encoder, respectively. Then, a multi-modal interaction module is introduced, which takes advantage of cross-modal attention to integrate imaging and non-imaging information and reinforce relationships between these modalities. Moreover, an extensive objective function is designed to reduce the discrepancy between modalities for effectively fusing the features of multi-modal data, which could further improve the diagnosis performance. We evaluate the effectiveness of our proposed method on the ADNI dataset, and the extensive experiments demonstrate that our MCAD achieves superior performance for multiple AD-related classification tasks, compared to several competing methods. Also, we investigate the importance of cross-attention and the contribution of each modality to the diagnostics performance. The experimental results demonstrate that combining multi-modality data via cross-attention is helpful for accurate AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
11秒前
20秒前
31秒前
42秒前
52秒前
小胡萝白发布了新的文献求助10
54秒前
皮皮完成签到 ,获得积分10
54秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
善学以致用应助小胡萝白采纳,获得10
1分钟前
2分钟前
2分钟前
苹果牌牛仔裤完成签到,获得积分10
2分钟前
2分钟前
2分钟前
norberta发布了新的文献求助10
2分钟前
科研通AI6应助27小天使采纳,获得30
2分钟前
2分钟前
红毛兔完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
oleskarabach发布了新的文献求助10
2分钟前
wangermazi完成签到,获得积分10
2分钟前
小胡萝白发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
水牛完成签到,获得积分10
3分钟前
3分钟前
3分钟前
27小天使发布了新的文献求助30
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4316557
求助须知:如何正确求助?哪些是违规求助? 3834993
关于积分的说明 11994834
捐赠科研通 3475276
什么是DOI,文献DOI怎么找? 1906194
邀请新用户注册赠送积分活动 952303
科研通“疑难数据库(出版商)”最低求助积分说明 853804