级联
选择性
人工神经网络
计算机科学
膜
沸石
工艺工程
生物系统
材料科学
化学工程
人工智能
工程类
化学
生物化学
生物
催化作用
作者
Seyyed Amirreza Abdollahi,AmirReza Andarkhor,Afham Pourahmad,Ali Hosin Alibak,Falah Alobaid,Babak Aghel
出处
期刊:Membranes
[MDPI AG]
日期:2023-05-18
卷期号:13 (5): 526-526
被引量:11
标识
DOI:10.3390/membranes13050526
摘要
Separating carbon dioxide (CO2) from gaseous streams released into the atmosphere is becoming critical due to its greenhouse effect. Membrane technology is one of the promising technologies for CO2 capture. SAPO-34 filler was incorporated in polymeric media to synthesize mixed matrix membrane (MMM) and enhance the CO2 separation performance of this process. Despite relatively extensive experimental studies, there are limited studies that cover the modeling aspects of CO2 capture by MMMs. This research applies a special type of machine learning modeling scenario, namely, cascade neural networks (CNN), to simulate as well as compare the CO2/CH4 selectivity of a wide range of MMMs containing SAPO-34 zeolite. A combination of trial-and-error analysis and statistical accuracy monitoring has been applied to fine-tune the CNN topology. It was found that the CNN with a 4-11-1 topology has the highest accuracy for the modeling of the considered task. The designed CNN model is able to precisely predict the CO2/CH4 selectivity of seven different MMMs in a broad range of filler concentrations, pressures, and temperatures. The model predicts 118 actual measurements of CO2/CH4 selectivity with an outstanding accuracy (i.e., AARD = 2.92%, MSE = 1.55, R = 0.9964).
科研通智能强力驱动
Strongly Powered by AbleSci AI