The global research of artificial intelligence on inflammatory bowel disease: A bibliometric analysis

文献计量学 科学网 炎症性肠病 聚类分析 疾病 医学 数据科学 人工智能 计算机科学 图书馆学 病理 荟萃分析
作者
Suqi Zeng,Chenyu Dong,Chuan Liu,Junhai Zhen,Pu Yu,Jiaming Hu,Weiguo Dong
出处
期刊:Digital health [SAGE Publishing]
卷期号:11
标识
DOI:10.1177/20552076251326217
摘要

Aims This study aimed to evaluate the related research on artificial intelligence (AI) in inflammatory bowel disease (IBD) through bibliometrics analysis and identified the research basis, current hotspots, and future development. Methods The related literature was acquired from the Web of Science Core Collection (WoSCC) on 31 December 2024. Co-occurrence and cooperation relationship analysis of (cited) authors, institutions, countries, cited journals, references, and keywords in the literature were carried out through CiteSpace 6.1.R6 software and the Online Analysis platform of Literature Metrology. Meanwhile, relevant knowledge maps were drawn, and keywords clustering analysis was performed. Results According to WoSCC, 1919 authors, 790 research institutions, 184 journals, and 49 countries/regions published 176 AI-related papers in IBD during 1999–2024. The number of papers published has increased significantly since 2019, reaching a maximum by 2023. The United States had the highest number of publications and the closest collaboration with other countries. The clustering analysis showed that the earliest studies focused on “psychometric value” and then moved to “deep learning model,” “intestinal ultrasound,” and “new diagnostic strategies.” Conclusion This study is the first bibliometric analysis to summarize the current status and to visually reveal the development trends and future research hotspots of the application of AI in IBD. The application of AI in IBD is still in its infancy, and the focus of this field will shift to improving the efficiency of diagnosis and treatment through deep learning techniques, big data-based treatment, and prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
danna发布了新的文献求助10
刚刚
刚刚
123发布了新的文献求助10
刚刚
刚刚
科目三应助liutengfei123采纳,获得10
刚刚
MoCh发布了新的文献求助10
1秒前
jinwei970116完成签到,获得积分10
2秒前
2秒前
shen发布了新的文献求助10
3秒前
zommen完成签到 ,获得积分10
4秒前
翟拂完成签到,获得积分10
4秒前
DLL完成签到 ,获得积分10
4秒前
wyp完成签到,获得积分10
5秒前
123完成签到,获得积分10
6秒前
6秒前
6秒前
kk发布了新的文献求助50
6秒前
在水一方应助IchenNG采纳,获得50
8秒前
小二郎应助贵贵采纳,获得10
10秒前
亦犹未进发布了新的文献求助10
11秒前
上官若男应助瓜瓜叽叽采纳,获得10
11秒前
12秒前
12秒前
Hans发布了新的文献求助10
12秒前
嘿嘿完成签到,获得积分10
13秒前
燕燕于飞发布了新的文献求助10
13秒前
CH发布了新的文献求助20
13秒前
晴天完成签到,获得积分10
13秒前
14秒前
15秒前
赵瑞完成签到,获得积分10
15秒前
hu完成签到,获得积分10
15秒前
mix完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
16秒前
111完成签到,获得积分20
18秒前
寒冷的世界完成签到 ,获得积分10
18秒前
张亚慧发布了新的文献求助10
19秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588