亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil

自回归积分移动平均 背景(考古学) 偏自我相关函数 大流行 计量经济学 自相关 计算机科学 运筹学 时间序列 2019年冠状病毒病(COVID-19) 统计 经济 地理 工程类 机器学习 数学 传染病(医学专业) 病理 考古 疾病 医学
作者
Raydonal Ospina,João A. M. Gondim,Víctor Leiva,Cecília Castro
出处
期刊:Mathematics [MDPI AG]
卷期号:11 (14): 3069-3069 被引量:96
标识
DOI:10.3390/math11143069
摘要

This comprehensive overview focuses on the issues presented by the pandemic due to COVID-19, understanding its spread and the wide-ranging effects of government-imposed restrictions. The overview examines the utility of autoregressive integrated moving average (ARIMA) models, which are often overlooked in pandemic forecasting due to perceived limitations in handling complex and dynamic scenarios. Our work applies ARIMA models to a case study using data from Recife, the capital of Pernambuco, Brazil, collected between March and September 2020. The research provides insights into the implications and adaptability of predictive methods in the context of a global pandemic. The findings highlight the ARIMA models’ strength in generating accurate short-term forecasts, crucial for an immediate response to slow down the disease’s rapid spread. Accurate and timely predictions serve as the basis for evidence-based public health strategies and interventions, greatly assisting in pandemic management. Our model selection involves an automated process optimizing parameters by using autocorrelation and partial autocorrelation plots, as well as various precise measures. The performance of the chosen ARIMA model is confirmed when comparing its forecasts with real data reported after the forecast period. The study successfully forecasts both confirmed and recovered COVID-19 cases across the preventive plan phases in Recife. However, limitations in the model’s performance are observed as forecasts extend into the future. By the end of the study period, the model’s error substantially increased, and it failed to detect the stabilization and deceleration of cases. The research highlights challenges associated with COVID-19 data in Brazil, such as under-reporting and data recording delays. Despite these limitations, the study emphasizes the potential of ARIMA models for short-term pandemic forecasting while emphasizing the need for further research to enhance long-term predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34举报cz求助涉嫌违规
4秒前
11秒前
22秒前
37秒前
Criminology34举报好多分求助涉嫌违规
52秒前
外向的妍完成签到,获得积分10
55秒前
58秒前
嘿嘿应助时尚寄云采纳,获得10
1分钟前
1分钟前
邹醉蓝完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
陈丹丹关注了科研通微信公众号
2分钟前
2分钟前
陈丹丹发布了新的文献求助10
2分钟前
2分钟前
陈丹丹完成签到,获得积分10
3分钟前
Criminology34举报李大橘求助涉嫌违规
3分钟前
3分钟前
花椒鱼完成签到 ,获得积分10
3分钟前
Criminology34举报xy18268566043求助涉嫌违规
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
牟白容发布了新的文献求助10
5分钟前
5分钟前
牟白容完成签到,获得积分10
5分钟前
5分钟前
B4Bear完成签到,获得积分10
5分钟前
慕青应助诚心山灵采纳,获得10
5分钟前
5分钟前
诚心山灵完成签到,获得积分20
5分钟前
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595785
求助须知:如何正确求助?哪些是违规求助? 4681007
关于积分的说明 14818241
捐赠科研通 4653406
什么是DOI,文献DOI怎么找? 2535696
邀请新用户注册赠送积分活动 1503562
关于科研通互助平台的介绍 1469783