Abdominal fat quantification using convolutional networks

组内相关 基本事实 雅卡索引 分割 Sørensen–骰子系数 磁共振成像 脂肪组织 人工智能 医学 标准差 计算机科学 皮尔逊积矩相关系数 图像分割 放射科 模式识别(心理学) 统计 数学 再现性 内科学
作者
Denis Schneider,Tobias Eggebrecht,Anna Linder,Nicolas Linder,Alexander Schaudinn,Matthias Blüher,Timm Denecke,Harald Busse
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (12): 8957-8964 被引量:1
标识
DOI:10.1007/s00330-023-09865-w
摘要

To present software for automated adipose tissue quantification of abdominal magnetic resonance imaging (MRI) data using fully convolutional networks (FCN) and to evaluate its overall performance-accuracy, reliability, processing effort, and time-in comparison with an interactive reference method.Single-center data of patients with obesity were analyzed retrospectively with institutional review board approval. Ground truth for subcutaneous (SAT) and visceral adipose tissue (VAT) segmentation was provided by semiautomated region-of-interest (ROI) histogram thresholding of 331 full abdominal image series. Automated analyses were implemented using UNet-based FCN architectures and data augmentation techniques. Cross-validation was performed on hold-out data using standard similarity and error measures.The FCN models reached Dice coefficients of up to 0.954 for SAT and 0.889 for VAT segmentation during cross-validation. Volumetric SAT (VAT) assessment resulted in a Pearson correlation coefficient of 0.999 (0.997), relative bias of 0.7% (0.8%), and standard deviation of 1.2% (3.1%). Intraclass correlation (coefficient of variation) within the same cohort was 0.999 (1.4%) for SAT and 0.996 (3.1%) for VAT.The presented methods for automated adipose-tissue quantification showed substantial improvements over common semiautomated approaches (no reader dependence, less effort) and thus provide a promising option for adipose tissue quantification.Deep learning techniques will likely enable image-based body composition analyses on a routine basis. The presented fully convolutional network models are well suited for full abdominopelvic adipose tissue quantification in patients with obesity.• This work compared the performance of different deep-learning approaches for adipose tissue quantification in patients with obesity. • Supervised deep learning-based methods using fully convolutional networks were suited best. • Measures of accuracy were equal to or better than the operator-driven approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
w2503完成签到,获得积分10
1秒前
玛卡巴卡发布了新的文献求助10
1秒前
科研通AI5应助路明非采纳,获得30
1秒前
小白菜发布了新的文献求助10
2秒前
3秒前
4秒前
1233333完成签到,获得积分20
4秒前
出水的芙蓉完成签到,获得积分10
4秒前
小二郎应助莫里亚蒂采纳,获得10
4秒前
斯文败类应助研友_nongdalyl采纳,获得10
5秒前
6秒前
dd123发布了新的文献求助10
6秒前
木木发布了新的文献求助10
7秒前
打打应助太叔若南采纳,获得10
8秒前
9秒前
123456完成签到,获得积分10
10秒前
李子敬完成签到,获得积分10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
Tianju完成签到,获得积分10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
10秒前
打打应助科研通管家采纳,获得10
10秒前
Thien应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
Thien应助科研通管家采纳,获得10
10秒前
11秒前
Thien应助科研通管家采纳,获得20
11秒前
Hello应助科研通管家采纳,获得10
11秒前
科目三应助cc采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
Thien应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
11秒前
Thien应助科研通管家采纳,获得10
11秒前
11秒前
卡卡西应助科研通管家采纳,获得10
11秒前
11秒前
桐桐应助科研通管家采纳,获得30
11秒前
爆米花应助科研通管家采纳,获得10
12秒前
Thien应助科研通管家采纳,获得10
12秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821306
求助须知:如何正确求助?哪些是违规求助? 3364005
关于积分的说明 10426992
捐赠科研通 3082521
什么是DOI,文献DOI怎么找? 1695671
邀请新用户注册赠送积分活动 815216
科研通“疑难数据库(出版商)”最低求助积分说明 769050