组内相关
基本事实
雅卡索引
分割
Sørensen–骰子系数
磁共振成像
脂肪组织
人工智能
医学
标准差
计算机科学
皮尔逊积矩相关系数
图像分割
放射科
模式识别(心理学)
统计
数学
再现性
内科学
作者
Denis Schneider,Tobias Eggebrecht,Anna Linder,Nicolas Linder,Alexander Schaudinn,Matthias Blüher,Timm Denecke,Harald Busse
出处
期刊:European Radiology
[Springer Science+Business Media]
日期:2023-07-12
卷期号:33 (12): 8957-8964
被引量:1
标识
DOI:10.1007/s00330-023-09865-w
摘要
To present software for automated adipose tissue quantification of abdominal magnetic resonance imaging (MRI) data using fully convolutional networks (FCN) and to evaluate its overall performance-accuracy, reliability, processing effort, and time-in comparison with an interactive reference method.Single-center data of patients with obesity were analyzed retrospectively with institutional review board approval. Ground truth for subcutaneous (SAT) and visceral adipose tissue (VAT) segmentation was provided by semiautomated region-of-interest (ROI) histogram thresholding of 331 full abdominal image series. Automated analyses were implemented using UNet-based FCN architectures and data augmentation techniques. Cross-validation was performed on hold-out data using standard similarity and error measures.The FCN models reached Dice coefficients of up to 0.954 for SAT and 0.889 for VAT segmentation during cross-validation. Volumetric SAT (VAT) assessment resulted in a Pearson correlation coefficient of 0.999 (0.997), relative bias of 0.7% (0.8%), and standard deviation of 1.2% (3.1%). Intraclass correlation (coefficient of variation) within the same cohort was 0.999 (1.4%) for SAT and 0.996 (3.1%) for VAT.The presented methods for automated adipose-tissue quantification showed substantial improvements over common semiautomated approaches (no reader dependence, less effort) and thus provide a promising option for adipose tissue quantification.Deep learning techniques will likely enable image-based body composition analyses on a routine basis. The presented fully convolutional network models are well suited for full abdominopelvic adipose tissue quantification in patients with obesity.• This work compared the performance of different deep-learning approaches for adipose tissue quantification in patients with obesity. • Supervised deep learning-based methods using fully convolutional networks were suited best. • Measures of accuracy were equal to or better than the operator-driven approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI