Integrated Reinforcement Learning Framework for UAV Swarm Two-Stage Cooperative Multi-Target Detection Tasks

计算机科学 强化学习 群体行为 人工智能 人机交互
作者
Yijing Zhao,Shih‐Tong Lu,Chao Wang,Yumeng Liu,Yi Ding,Hongan Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jiot.2025.3527157
摘要

Developing efficient collaborative strategies for UAV swarms is crucial for achieving accurate and rapid execution of the Multi-Target Detecting (MTD) tasks which involve two primary stages in practical scenarios: dispersed search by multi-UAVs in unknown dynamic environments to locate targets, and subsequent aggregation to gather all targets information within the scene, which called detecting and aggregation processes. In recent years, several collaborative strategy methods have been developed for application in UAV swarm mission scenarios. These methods are typically designed for single-stage tasks, and therefore their performance is likely to be suboptimal when applied to multi-stage tasks like the MTD tasks, which have distinctly different characteristics and objectives across stages. In this paper, we propose a novel integrated deep reinforcement learning decision framework that can offer effective collaborative strategies for tasks characterized by distinct stages, denoted as the STDGNet. The STDGNet comprises a Transformer-based Deep Graph Network (TDGN) module alongside two Specialized optimization strategies: the location-dispersion strategy and the cluster-action-consistency strategy. The TDGN module is designed to extract features from observations and interaction dynamics among UAVs, aimed at generating collaborative strategies. The integration of two specialized strategies enables the STDGNet framework to adapt well to multi-stage tasks: during the detection stage, the location-dispersion strategy maintains UAV dispersal to expedite the discovery of more targets; during the aggregation stage, the cluster-action-consistency strategy ensures that UAVs within the same cluster move in the same direction, facilitating the formation of interconnected communication networks. To assess the efficiency and resilience of the proposed framework, we construct an MTD environment where extensive experimentation shows that the STDGNet framework surpasses baseline methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwa完成签到 ,获得积分10
1秒前
3秒前
下一块蛋糕完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
王雪完成签到,获得积分10
6秒前
君无名完成签到 ,获得积分10
6秒前
tangchao完成签到,获得积分10
8秒前
Miracle完成签到,获得积分10
8秒前
害羞便当发布了新的文献求助10
9秒前
xlh发布了新的文献求助10
9秒前
简单平蓝发布了新的文献求助10
10秒前
葵花杜甫发布了新的文献求助10
11秒前
展七完成签到,获得积分10
11秒前
12秒前
14秒前
15秒前
三毛完成签到,获得积分10
16秒前
半壶月色半边天完成签到 ,获得积分10
16秒前
zhying55发布了新的文献求助10
18秒前
19秒前
不会科研的研0完成签到 ,获得积分10
22秒前
马保国123完成签到,获得积分10
22秒前
丘比特应助kkk采纳,获得10
23秒前
25秒前
25秒前
xlh完成签到,获得积分10
26秒前
所所应助maclogos采纳,获得10
27秒前
27秒前
一张纸完成签到,获得积分10
28秒前
Tsai完成签到,获得积分10
29秒前
31秒前
32秒前
34秒前
kkk发布了新的文献求助10
35秒前
35秒前
xbf完成签到,获得积分10
36秒前
不三不四完成签到,获得积分10
37秒前
深情安青应助安安的屁屁采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215380
捐赠科研通 3038867
什么是DOI,文献DOI怎么找? 1667677
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339