Literary characters and GPT-4: from William Shakespeare to Elena Ferrante

艺术 历史 文学类
作者
Gabriel Abrams
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
标识
DOI:10.1093/llc/fqae079
摘要

Abstract We prompted GPT-4 (a large language model) to play the Dictator game, a classic behavioral economics experiment, as 148 literary fictional characters from the 17th century to the 21st century. There is a general and mainly monotonic decrease in selfish behavior over time in literary characters. Fifty per cent of the decisions of characters from the 17th century are selfish compared to just 19 per cent from the 21st century. Historical literary characters have a surprisingly strong net positive valence across 2,785 personality traits generated by GPT-4 (3.2× more positive than negative). However, valence varied significantly across centuries. Positive traits were 10× more common than negative in the 21st century, but just 1.8× more common in the 17th century. ‘Empathetic’, ‘fair’, and ‘selfless’, were the most overweight traits in the 20th century. Conversely, ‘manipulative’, ‘ambitious’, and ‘ruthless’ were the most overweight traits in the 17th century. Male characters were more selfish than female characters. The skew was highest in the 17th century, where selfish decisions for male and female were 62 and 20 per cent, respectively. This analysis also offers a quantifiable partial Turing test. The key human-like characteristics of the model are the zero price effect, lack of spitefulness, and altruism. However, the model does not have human sensitivity to relative ordinal position and has significantly lower price elasticity than humans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
刚刚
shiqiang mu应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
xiaozhuzhu完成签到,获得积分10
1秒前
研友_VZG7GZ应助twilight采纳,获得10
2秒前
3秒前
JiahaoRao完成签到,获得积分20
3秒前
4秒前
善学以致用应助树袋采纳,获得10
5秒前
77完成签到,获得积分10
7秒前
Hello应助恒心捏采纳,获得10
7秒前
赘婿应助自信的孱采纳,获得10
7秒前
我是老大应助aaa采纳,获得10
8秒前
刘睿伯发布了新的文献求助10
8秒前
1234567xjy发布了新的文献求助10
10秒前
XNt举报森水垚求助涉嫌违规
11秒前
15秒前
酷波er应助Hanhan_Yu采纳,获得10
15秒前
15秒前
16秒前
17秒前
余峥瑶完成签到 ,获得积分10
19秒前
aaa发布了新的文献求助10
19秒前
刘睿伯完成签到,获得积分20
20秒前
HeyU发布了新的文献求助10
20秒前
momo发布了新的文献求助10
20秒前
小苗完成签到 ,获得积分10
21秒前
Lijia_YAO发布了新的文献求助10
22秒前
悦悦发布了新的文献求助10
22秒前
葡萄萄萄完成签到 ,获得积分10
23秒前
jingcheng完成签到,获得积分10
24秒前
24秒前
顾矜应助Unifate采纳,获得10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154624
求助须知:如何正确求助?哪些是违规求助? 3690606
关于积分的说明 11657682
捐赠科研通 3382510
什么是DOI,文献DOI怎么找? 1856183
邀请新用户注册赠送积分活动 917711
科研通“疑难数据库(出版商)”最低求助积分说明 831105