Statistical cone-beam CT noise reduction with multiscale decomposition and penalized weighted least squares in the projection domain

投影(关系代数) 噪音(视频) 降噪 计算机科学 人工智能 领域(数学分析) 算法 数学 计算机视觉 图像(数学) 数学分析
作者
Shaojie Tang,Jin Liu,Guo Li,Zhiwei Qiao,Chen Yang,Xuanqin Mou
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
标识
DOI:10.1177/08953996251337889
摘要

Purposes: Suppressing noise can effectively promote image quality and save radiation dose in clinical imaging with x-ray computed tomography (CT). To date, numerous statistical noise reduction approaches have ever been proposed in image domain, projection domain or both domains. Especially, a multiscale decomposition strategy can be exploited to enhance the performance of noise suppression while preserving image sharpness. Recognizing the inherent advantage of noise suppression in the projection domain, we have previously proposed a projection domain multiscale penalized weighted least squares (PWLS) method for fan-beam CT imaging, wherein the sampling intervals are explicitly taken into account for the possible variation of sampling rates. In this work, we extend our previous method into cone-beam (CB) CT imaging, which is more relevant to practical imaging applications. Methods: The projection domain multiscale PWLS method is derived for CBCT imaging by converting an isotropic diffusion partial differential equation (PDE) in the three-dimensional (3D) image domain into its counterpart in the CB projection domain. With adoption of the Markov random field (MRF) objective function, the CB projection domain multiscale PWLS method suppresses noise at each scale. The performance of the proposed method for statistical noise reduction in CBCT imaging is experimentally evaluated and verified using the projection data acquired by an actual micro-CT scanner. Results: The preliminary result shows that the proposed CB projection domain multiscale PWLS method outperforms the CB projection domain single-scale PWLS, the 3D image domain discriminative feature representation (DFR), and the 3D image domain multiscale nonlinear diffusion methods in noise reduction. Moreover, the proposed method can preserve image sharpness effectively while avoiding generation of novel artifacts. Conclusions: Since the sampling intervals are explicitly taken into account in the projection domain multiscale decomposition, the proposed method would be beneficial to advanced applications where the CBCT imaging is employed and the sampling rates vary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助ll采纳,获得10
刚刚
情怀应助111采纳,获得10
刚刚
生椰拿铁死忠粉应助半斤采纳,获得20
刚刚
叶心完成签到,获得积分10
刚刚
刚刚
1秒前
芒go发布了新的文献求助10
1秒前
siraotianya完成签到,获得积分10
2秒前
2秒前
Akim应助鹬鸱采纳,获得10
4秒前
LLP发布了新的文献求助10
5秒前
chentzbio发布了新的文献求助30
5秒前
牛牛完成签到,获得积分10
6秒前
雄图发布了新的文献求助10
6秒前
我是老大应助灯灯采纳,获得30
7秒前
CodeCraft应助Luu采纳,获得10
8秒前
8秒前
奋斗炳完成签到,获得积分10
9秒前
9秒前
斯文败类应助Rui采纳,获得10
9秒前
9秒前
111完成签到,获得积分10
10秒前
幸福的觅风完成签到 ,获得积分10
11秒前
fangang发布了新的文献求助20
11秒前
1111完成签到,获得积分10
11秒前
萤火虫发布了新的文献求助10
12秒前
不安向雁关注了科研通微信公众号
12秒前
王华瑞完成签到,获得积分10
12秒前
高乐高完成签到,获得积分10
12秒前
113Y应助PinkiYuan采纳,获得10
13秒前
13秒前
feng发布了新的文献求助10
13秒前
王王王发布了新的文献求助10
14秒前
么么哒荼蘼酱完成签到,获得积分10
14秒前
15秒前
chentzbio完成签到,获得积分20
16秒前
在水一方应助平安喜乐采纳,获得10
16秒前
zl完成签到,获得积分10
16秒前
1111发布了新的文献求助10
16秒前
Hudson完成签到,获得积分10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4151798
求助须知:如何正确求助?哪些是违规求助? 3688017
关于积分的说明 11650787
捐赠科研通 3380729
什么是DOI,文献DOI怎么找? 1855229
邀请新用户注册赠送积分活动 917158
科研通“疑难数据库(出版商)”最低求助积分说明 830840