DRS-YOLO: an improved YOLOv8-based small object detection model for UAV aerial imagery

航空影像 计算机科学 计算机视觉 人工智能 目标检测 航空影像 对象(语法) 遥感 航拍照片 图像(数学) 地理 模式识别(心理学)
作者
Rui Dai,Hongbo Bi,Fengyang Han,Jie Tang,Cong Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (9): 095413-095413
标识
DOI:10.1088/1361-6501/ae080a
摘要

Abstract In unmanned aerial vehicle (UAV) imagery, the high proportion of small objects and limited computational resources pose significant challenges for object detection, making it difficult for conventional methods to balance accuracy and efficiency. To enhance small object detection performance, this paper proposes an improved YOLOv8-based model, named DRS-YOLO. The model incorporates spatial depth convolution to improve feature retention during downsampling for better perception of small objects. A Downsampling Compensation and Dual-path Fusion module is introduced, integrating the path aggregation feature pyramid network structure, a hybrid downsampling strategy via the DownSimper component, and adaptive upsampling using the DySample mechanism, enabling efficient cross-scale information fusion. Additionally, the paper proposes a refined feature extraction module, RepDNeckELAN4, which builds on the cross stage partial architecture by integrating Reparameterized Convolution and the efficient layer aggregation network, and further introduces multi-scale dilated convolution paths to enhance local feature extraction and improve detection accuracy under complex backgrounds. In the detection head, a 160 × 160 resolution branch is added to strengthen the recognition of tiny objects, while the 20 × 20 branch is pruned to reduce computational overhead and improve inference efficiency. Experimental results on the VisDrone2019 dataset show that, compared with the baseline YOLOv8s model, the proposed DRS-YOLO achieves significant improvements, with mAP@0.5 increased by 15.4% and mAP@0.95 increased by 10.8%, demonstrating its effectiveness in improving small object detection in UAV imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
shy完成签到,获得积分10
1秒前
3秒前
小H发布了新的文献求助10
4秒前
宥沐完成签到,获得积分10
4秒前
FashionBoy应助雅思莫拉采纳,获得10
4秒前
ming830发布了新的文献求助10
5秒前
6秒前
longer发布了新的文献求助10
7秒前
ding应助青梧采纳,获得10
7秒前
Srishti完成签到,获得积分10
7秒前
9秒前
cyj发布了新的文献求助10
10秒前
10秒前
走起完成签到,获得积分10
11秒前
SihanYin发布了新的文献求助10
11秒前
FashionBoy应助清风_breeze采纳,获得10
11秒前
11秒前
三石完成签到 ,获得积分10
12秒前
局外人完成签到,获得积分10
12秒前
下文献应助欢欢采纳,获得10
12秒前
13秒前
kk完成签到,获得积分10
14秒前
14秒前
14秒前
snowdream完成签到,获得积分10
14秒前
15秒前
16秒前
CipherSage应助Salt采纳,获得10
17秒前
fighting完成签到 ,获得积分10
17秒前
17秒前
vampire发布了新的文献求助10
18秒前
科研小白发布了新的文献求助10
19秒前
19秒前
cyj完成签到,获得积分10
20秒前
20秒前
Finch完成签到 ,获得积分10
21秒前
王铭智完成签到,获得积分10
21秒前
吸尘器完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286904
求助须知:如何正确求助?哪些是违规求助? 4439441
关于积分的说明 13821830
捐赠科研通 4321463
什么是DOI,文献DOI怎么找? 2371969
邀请新用户注册赠送积分活动 1367463
关于科研通互助平台的介绍 1330923