亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Incomplete Contrastive Multi-View Clustering with High-Confidence Guiding

缺少数据 聚类分析 一致性(知识库) 代表(政治) 数据挖掘 机器学习 利用 约束聚类 人工智能 计算机科学 特征学习 图形 共识聚类 模糊聚类 模式识别(心理学) 完整信息 相关聚类 关系(数据库) 外部数据表示 数据集成 学习迁移 编码
作者
Guoqing Chao,Yi Jiang,Dianhui Chu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (10): 11221-11229 被引量:64
标识
DOI:10.1609/aaai.v38i10.29000
摘要

Incomplete multi-view clustering becomes an important research problem, since multi-view data with missing values are ubiquitous in real-world applications. Although great efforts have been made for incomplete multi-view clustering, there are still some challenges: 1) most existing methods didn't make full use of multi-view information to deal with missing values; 2) most methods just employ the consistent information within multi-view data but ignore the complementary information; 3) For the existing incomplete multi-view clustering methods, incomplete multi-view representation learning and clustering are treated as independent processes, which leads to performance gap. In this work, we proposed a novel Incomplete Contrastive Multi-View Clustering method with high-confidence guiding (ICMVC). Firstly, we proposed a multi-view consistency relation transfer plus graph convolutional network to tackle missing values problem. Secondly, instance-level attention fusion and high-confidence guiding are proposed to exploit the complementary information while instance-level contrastive learning for latent representation is designed to employ the consistent information. Thirdly, an end-to-end framework is proposed to integrate multi-view missing values handling, multi-view representation learning and clustering assignment for joint optimization. Experiments compared with state-of-the-art approaches demonstrated the effectiveness and superiority of our method. Our code is publicly available at https://github.com/liunian-Jay/ICMVC. The version with supplementary material can be found at http://arxiv.org/abs/2312.08697.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xmsyq完成签到 ,获得积分10
刚刚
lll完成签到,获得积分10
23秒前
shhoing应助科研通管家采纳,获得10
36秒前
shhoing应助科研通管家采纳,获得10
36秒前
xingsixs完成签到 ,获得积分10
49秒前
59秒前
淡定自中发布了新的文献求助10
1分钟前
zbx发布了新的文献求助10
1分钟前
zbx完成签到,获得积分10
1分钟前
1分钟前
跳跃的翼发布了新的文献求助10
1分钟前
1分钟前
hll发布了新的文献求助10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
Nene应助hll采纳,获得20
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
hll完成签到,获得积分20
2分钟前
Tales完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
Jasper应助ZH的天方夜谭采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
aa完成签到,获得积分10
4分钟前
4分钟前
aa发布了新的文献求助10
4分钟前
风一样的风干肠完成签到 ,获得积分10
5分钟前
msk完成签到 ,获得积分10
5分钟前
科目三应助朱可欣采纳,获得30
6分钟前
爆米花应助科科研研up采纳,获得10
6分钟前
我是老大应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
朱可欣发布了新的文献求助30
6分钟前
科科研研up完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543405
求助须知:如何正确求助?哪些是违规求助? 4629504
关于积分的说明 14611266
捐赠科研通 4570834
什么是DOI,文献DOI怎么找? 2505960
邀请新用户注册赠送积分活动 1483161
关于科研通互助平台的介绍 1454572