Rapid assessment of the blood-feeding histories of wild-caught malaria mosquitoes using mid-infrared spectroscopy and machine learning

疟疾 寄生虫学 按蚊 昆虫学 热带医学 生物 病毒学 兽医学 动物 医学 免疫学
作者
Emmanuel P. Mwanga,Idrisa S. Mchola,Faraja E. Makala,Issa H. Mshani,Doreen J. Siria,Sophia H. Mwinyi,Said Abbasi,Godian Seleman,Jacqueline N. Mgaya,Mario González‐Jiménez,Klaas Wynne,Maggy T. Sikulu-Lord,Prashanth Selvaraj,Fredros O. Okumu,Francesco Baldini,Simon A. Babayan
出处
期刊:Malaria Journal [BioMed Central]
卷期号:23 (1) 被引量:6
标识
DOI:10.1186/s12936-024-04915-0
摘要

Abstract Background The degree to which Anopheles mosquitoes prefer biting humans over other vertebrate hosts, i.e. the human blood index (HBI), is a crucial parameter for assessing malaria transmission risk. However, existing techniques for identifying mosquito blood meals are demanding in terms of time and effort, involve costly reagents, and are prone to inaccuracies due to factors such as cross-reactivity with other antigens or partially digested blood meals in the mosquito gut. This study demonstrates the first field application of mid-infrared spectroscopy and machine learning (MIRS-ML), to rapidly assess the blood-feeding histories of malaria vectors, with direct comparison to PCR assays. Methods and results Female Anopheles funestus mosquitoes (N = 1854) were collected from rural Tanzania and desiccated then scanned with an attenuated total reflectance Fourier-transform Infrared (ATR-FTIR) spectrometer. Blood meals were confirmed by PCR, establishing the ‘ground truth’ for machine learning algorithms. Logistic regression and multi-layer perceptron classifiers were employed to identify blood meal sources, achieving accuracies of 88%–90%, respectively, as well as HBI estimates aligning well with the PCR-based standard HBI. Conclusions This research provides evidence of MIRS-ML effectiveness in classifying blood meals in wild Anopheles funestus , as a potential complementary surveillance tool in settings where conventional molecular techniques are impractical. The cost-effectiveness, simplicity, and scalability of MIRS-ML, along with its generalizability, outweigh minor gaps in HBI estimation. Since this approach has already been demonstrated for measuring other entomological and parasitological indicators of malaria, the validation in this study broadens its range of use cases, positioning it as an integrated system for estimating pathogen transmission risk and evaluating the impact of interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小白不白完成签到,获得积分10
2秒前
罗婕完成签到,获得积分10
3秒前
3秒前
袁某完成签到,获得积分10
3秒前
3秒前
4秒前
踏实的傲白完成签到 ,获得积分10
4秒前
万能图书馆应助墨倾池采纳,获得10
5秒前
5秒前
6秒前
6秒前
情怀应助qq781208654采纳,获得10
6秒前
jerry完成签到,获得积分10
6秒前
Orange应助jason93采纳,获得30
8秒前
强健的梦蕊完成签到 ,获得积分10
8秒前
甄的艾你发布了新的文献求助10
8秒前
8秒前
9秒前
李浩发布了新的文献求助30
9秒前
9秒前
稳重发布了新的文献求助10
9秒前
瑞瑞刘完成签到 ,获得积分10
10秒前
袁某发布了新的文献求助10
10秒前
CodeCraft应助小洲冲冲冲采纳,获得10
11秒前
11秒前
烟花应助雪山飞虹采纳,获得10
13秒前
13秒前
ccerr发布了新的文献求助10
14秒前
香蕉梨愁完成签到 ,获得积分10
14秒前
howay完成签到,获得积分10
15秒前
墨倾池发布了新的文献求助10
15秒前
酷酷冰绿发布了新的文献求助30
16秒前
科研通AI5应助chenmeng采纳,获得10
16秒前
16秒前
17秒前
帅气的盼柳完成签到,获得积分10
17秒前
18秒前
科研通AI2S应助减简采纳,获得10
18秒前
wx完成签到,获得积分10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814939
求助须知:如何正确求助?哪些是违规求助? 3358987
关于积分的说明 10399369
捐赠科研通 3076561
什么是DOI,文献DOI怎么找? 1689868
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608