亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Dual Robust Graph Neural Network Against Graph Adversarial Attacks

对抗制 计算机科学 图形 稳健性(进化) 理论计算机科学 人工智能 机器学习 基因 化学 生物化学
作者
Qian Tao,Jianpeng Liao,Enze Zhang,Lusi Li
出处
期刊:Neural Networks [Elsevier BV]
卷期号:175: 106276-106276 被引量:6
标识
DOI:10.1016/j.neunet.2024.106276
摘要

Graph Neural Networks (GNNs) have gained widespread usage and achieved remarkable success in various real-world applications. Nevertheless, recent studies reveal the vulnerability of GNNs to graph adversarial attacks that fool them by modifying graph structure. This vulnerability undermines the robustness of GNNs and poses significant security and privacy risks across various applications. Hence, it is crucial to develop robust GNN models that can effectively defend against such attacks. One simple approach is to remodel the graph. However, most existing methods cannot fully preserve the similarity relationship among the original nodes while learning the node representation required for reweighting the edges. Furthermore, they lack supervision information regarding adversarial perturbations, hampering their ability to recognize adversarial edges. To address these limitations, we propose a novel Dual Robust Graph Neural Network (DualRGNN) against graph adversarial attacks. DualRGNN first incorporates a node-similarity-preserving graph refining (SPGR) module to prune and refine the graph based on the learned node representations, which contain the original nodes' similarity relationships, weakening the poisoning of graph adversarial attacks on graph data. DualRGNN then employs an adversarial-supervised graph attention (ASGAT) network to enhance the model's capability in identifying adversarial edges by treating these edges as supervised signals. Through extensive experiments conducted on four benchmark datasets, DualRGNN has demonstrated remarkable robustness against various graph adversarial attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzkyt完成签到,获得积分10
4秒前
希夷完成签到,获得积分10
5秒前
7秒前
量子星尘发布了新的文献求助10
13秒前
飘着的鬼完成签到 ,获得积分10
31秒前
心灵美语兰完成签到 ,获得积分10
32秒前
共享精神应助流萤采纳,获得10
38秒前
搜集达人应助勇敢的心采纳,获得10
40秒前
coconut完成签到 ,获得积分10
41秒前
yydragen应助科研通管家采纳,获得30
43秒前
YifanWang应助科研通管家采纳,获得30
43秒前
YifanWang应助科研通管家采纳,获得30
43秒前
YifanWang应助科研通管家采纳,获得30
43秒前
YifanWang应助科研通管家采纳,获得30
43秒前
43秒前
章鱼完成签到,获得积分10
47秒前
冷静初彤发布了新的文献求助10
48秒前
俊逸雨雪完成签到 ,获得积分10
49秒前
hayek完成签到,获得积分10
49秒前
JamesPei应助JIANGNANYAN采纳,获得10
50秒前
yyds应助Omni采纳,获得40
52秒前
小袁完成签到 ,获得积分10
53秒前
兰月满楼完成签到 ,获得积分10
1分钟前
1分钟前
Yybe完成签到,获得积分10
1分钟前
勇敢的心发布了新的文献求助10
1分钟前
阿水完成签到 ,获得积分10
1分钟前
羞涩的绮波完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Wone3完成签到 ,获得积分10
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
MchemG应助勇敢的心采纳,获得10
1分钟前
1分钟前
充电宝应助谦让R采纳,获得30
1分钟前
1分钟前
六月完成签到,获得积分10
1分钟前
hahaha发布了新的文献求助10
1分钟前
Orange应助兴奋的万声采纳,获得10
1分钟前
勤劳怜寒应助标致棉花糖采纳,获得20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4269495
求助须知:如何正确求助?哪些是违规求助? 3800288
关于积分的说明 11910538
捐赠科研通 3447253
什么是DOI,文献DOI怎么找? 1890919
邀请新用户注册赠送积分活动 941651
科研通“疑难数据库(出版商)”最低求助积分说明 845770