A Dual Robust Graph Neural Network Against Graph Adversarial Attacks

对抗制 计算机科学 图形 稳健性(进化) 理论计算机科学 人工智能 机器学习 生物化学 基因 化学
作者
Qian Tao,Jianpeng Liao,Enze Zhang,Lusi Li
出处
期刊:Neural Networks [Elsevier BV]
卷期号:175: 106276-106276 被引量:6
标识
DOI:10.1016/j.neunet.2024.106276
摘要

Graph Neural Networks (GNNs) have gained widespread usage and achieved remarkable success in various real-world applications. Nevertheless, recent studies reveal the vulnerability of GNNs to graph adversarial attacks that fool them by modifying graph structure. This vulnerability undermines the robustness of GNNs and poses significant security and privacy risks across various applications. Hence, it is crucial to develop robust GNN models that can effectively defend against such attacks. One simple approach is to remodel the graph. However, most existing methods cannot fully preserve the similarity relationship among the original nodes while learning the node representation required for reweighting the edges. Furthermore, they lack supervision information regarding adversarial perturbations, hampering their ability to recognize adversarial edges. To address these limitations, we propose a novel Dual Robust Graph Neural Network (DualRGNN) against graph adversarial attacks. DualRGNN first incorporates a node-similarity-preserving graph refining (SPGR) module to prune and refine the graph based on the learned node representations, which contain the original nodes' similarity relationships, weakening the poisoning of graph adversarial attacks on graph data. DualRGNN then employs an adversarial-supervised graph attention (ASGAT) network to enhance the model's capability in identifying adversarial edges by treating these edges as supervised signals. Through extensive experiments conducted on four benchmark datasets, DualRGNN has demonstrated remarkable robustness against various graph adversarial attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助PP采纳,获得10
1秒前
俊逸香岚完成签到,获得积分10
1秒前
夏沫完成签到,获得积分10
2秒前
orixero应助ss采纳,获得10
2秒前
Ava应助吴迪采纳,获得10
2秒前
WZ发布了新的文献求助10
2秒前
科研通AI2S应助欣喜若灵采纳,获得10
3秒前
BioRick发布了新的文献求助10
3秒前
Nomiy完成签到,获得积分10
3秒前
彭于晏应助途中的人采纳,获得10
3秒前
ljy2015完成签到 ,获得积分10
4秒前
29完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
科研通AI2S应助东北信风采纳,获得200
5秒前
王淳发布了新的文献求助10
5秒前
6秒前
肆樂柒发布了新的文献求助10
6秒前
科目三应助许一采纳,获得10
7秒前
lili完成签到,获得积分10
7秒前
cong完成签到 ,获得积分10
8秒前
SciGPT应助哲寒采纳,获得10
8秒前
香榴莲大王给香榴莲大王的求助进行了留言
8秒前
zzzzd完成签到,获得积分10
8秒前
icey发布了新的文献求助10
9秒前
fafafa完成签到,获得积分10
9秒前
尊敬的垣完成签到,获得积分10
9秒前
森Sen完成签到,获得积分10
9秒前
9秒前
zhjp发布了新的文献求助10
9秒前
沙心应助研友_Z7mAML采纳,获得10
9秒前
minorcold完成签到,获得积分10
9秒前
9秒前
英姑应助WZ采纳,获得10
10秒前
简单白梦完成签到,获得积分10
10秒前
Hyacinth发布了新的文献求助10
11秒前
潮汐完成签到,获得积分10
11秒前
liu发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5166767
求助须知:如何正确求助?哪些是违规求助? 4358750
关于积分的说明 13571404
捐赠科研通 4205294
什么是DOI,文献DOI怎么找? 2306229
邀请新用户注册赠送积分活动 1306022
关于科研通互助平台的介绍 1252469