Predicting Safety Accident Costs in Construction Projects Using Ensemble Data-Driven Models

事故(哲学) 计算机科学 运输工程 风险分析(工程) 工程类 业务 认识论 哲学
作者
Xin Xia,Pengcheng Xiang,Sadegh Khanmohammadi,Tian Gao,Mehrdad Arashpour
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (7) 被引量:3
标识
DOI:10.1061/jcemd4.coeng-14397
摘要

The construction industry suffers from frequent and expensive safety accidents, significantly affecting construction project performance. Numerous data-driven classification models have been developed to categorize construction accident outcomes. While critical influencing factors provide insights for safety prevention, existing models have given less attention to the cost of accidents—an important indicator influencing management decisions. This study aims to develop accident cost prediction models that examine crucial precursors of safety accidents, offering guidance for construction safety prevention from a financial perspective. This study collected 1,606 accident reports from the Chinese construction industry between 2005 and 2022 to address this gap. Three ensemble data-driven methods, namely random forest, extreme gradient boosting regressor (XGBoost), and natural gradient boosting regressor (NGBoost) were employed to develop accident cost prediction models. Based on the performance comparison, the random forest regression model for accident cost was determined to be the best prediction model. To extract the critical attributes affecting safety accident costs, this study utilized shapely additive explanations (SHAP) value to analyze the sensitivity and influence of input variables of data-driven models. The findings showed that collapse has the greatest impact on accident costs, as indicated by the highest mean SHAP value, followed by falling from height. Furthermore, factors such as year, safety supervision, drawing, and construction plan are noteworthy in affecting accident cost prediction. Safety department, protection, and work conditions hold a slightly higher degree of influence compared to contracting arrangement, safety culture, safety supervision, training and examination, and mechanical equipment on the model output. This study provides a dimension that might be overlooked in the investigation of safety accidents in the construction industry and the insights provided by findings will contribute to the development of targeted safety accident prevention strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊延恶完成签到,获得积分10
1秒前
nnnn完成签到,获得积分10
2秒前
ZQF完成签到,获得积分20
2秒前
勤H发布了新的文献求助20
3秒前
Jau完成签到,获得积分0
4秒前
含蓄绿兰完成签到,获得积分10
4秒前
务实羊发布了新的文献求助20
4秒前
小心完成签到 ,获得积分10
5秒前
5秒前
JasVe完成签到 ,获得积分10
5秒前
6秒前
123完成签到,获得积分10
6秒前
科研通AI5应助陈昭琼采纳,获得10
7秒前
岁月如歌完成签到,获得积分0
8秒前
ljn0406完成签到 ,获得积分10
9秒前
胡杨完成签到,获得积分10
9秒前
keyan发布了新的文献求助10
10秒前
小肥羊发布了新的文献求助10
11秒前
你不知道完成签到 ,获得积分10
11秒前
13秒前
bkagyin应助yycc采纳,获得10
13秒前
FashionBoy应助lizhiqian2024采纳,获得10
15秒前
科研通AI5应助lizhiqian2024采纳,获得10
15秒前
16秒前
陈昭琼发布了新的文献求助10
19秒前
20秒前
20秒前
恋风恋歌发布了新的文献求助10
21秒前
不辞完成签到,获得积分10
24秒前
AI完成签到 ,获得积分10
24秒前
高兴可乐发布了新的文献求助20
26秒前
26秒前
26秒前
ay发布了新的文献求助10
27秒前
VvV完成签到,获得积分10
29秒前
yan完成签到,获得积分10
29秒前
勤劳涵山发布了新的文献求助10
31秒前
大鱼发布了新的文献求助10
32秒前
香菜味钠片完成签到,获得积分10
32秒前
啾啾完成签到,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782940
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235518
捐赠科研通 3043399
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759050