A novel framework for landslide displacement prediction using MT-InSAR and machine learning techniques

干涉合成孔径雷达 山崩 流离失所(心理学) 算法 地质学 系列(地层学) 人工智能 机器学习 时间序列 计算机科学 岩土工程 合成孔径雷达 心理学 古生物学 心理治疗师
作者
Chao Zhou,Ying Cao,Lulu Gan,Yue Wang,Mahdi Motagh,Sigrid Roessner,Xie Hu,Kunlong Yin
出处
期刊:Engineering Geology [Elsevier]
卷期号:334: 107497-107497 被引量:61
标识
DOI:10.1016/j.enggeo.2024.107497
摘要

The prediction of landslide deformation is an important part of landslide early warning systems. Displacement prediction based on geotechnical in-situ monitoring performs well, but its high costs and spatial limitations hinder frequent use within large areas. Here, we propose a novel physically-based and cost-effective landslide displacement prediction framework using the combination of Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) and machine learning techniques. We first extract displacement time series for the landslide from spaceborne Copernicus Sentinel-1 A SAR imagery by MT-InSAR. Using wavelet transform, we then decompose the nonlinear displacement time series into trend terms, periodic terms, and noises. The advanced machine learning method of Gated Recurrent Units (GRU) is utilized to predict the trend and periodic displacements, respectively. The modeling inputs for trend and periodic displacement predictions are determined by analyzing their corresponding influencing factors. The total displacements are finally predicted by summing the predicted displacements of trend and periodic items. The Shuping and Muyubao landslides, identified as seepage-driven and buoyancy-driven, respectively, in the Three Gorges Reservoir area in China are selected as case studies to evaluate the performance of our methodology. The prediction results demonstrate that machine learning algorithms can accurately establish the nonlinear relationship between the landslide deformation and its triggers. GRU outperforms the algorithms of Long Short-Term Memory networks and Kernel-based Extreme Learning Machine, and the Adam algorithm can effectively optimize the model hyperparameters. The root mean square error and mean absolute percentage error are 3.817 and 0.022 in Shuping landslide, and 5.145 and 0.020 in Muyubao landslide, respectively. By integrating the advantages of MT-InSAR and machine learning techniques, our proposed prediction framework, considering the physics principles behind landslide deformation, can predict landslide displacement cost-effectively within large areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助AILOLIHH采纳,获得10
1秒前
1秒前
hhuajw应助葡萄酸奶冻采纳,获得150
1秒前
1秒前
ARIA发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助30
1秒前
2秒前
2秒前
在水一方应助欢欢采纳,获得10
3秒前
奕安发布了新的文献求助10
7秒前
无情的琳发布了新的文献求助10
7秒前
Akim应助觅莲者乙丑采纳,获得10
7秒前
科目三应助zerotwo采纳,获得10
8秒前
Liu发布了新的文献求助20
8秒前
kidney完成签到,获得积分10
8秒前
酷波er应助优美紫槐采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
小一完成签到 ,获得积分10
9秒前
搜集达人应助曦柚采纳,获得10
11秒前
ff发布了新的文献求助10
11秒前
Khalil完成签到 ,获得积分10
11秒前
酆不二完成签到,获得积分10
12秒前
小二郎应助段红琼采纳,获得10
12秒前
mumu完成签到,获得积分10
12秒前
kidney发布了新的文献求助10
14秒前
15秒前
15秒前
小琛完成签到,获得积分10
15秒前
Fortune完成签到,获得积分10
16秒前
jjf发布了新的文献求助10
17秒前
搞怪冬卉完成签到,获得积分10
18秒前
lllllll完成签到,获得积分10
19秒前
19秒前
科目三应助叨叨采纳,获得10
19秒前
shinian发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
嘻嘻完成签到 ,获得积分10
21秒前
21秒前
Liu完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730659
求助须知:如何正确求助?哪些是违规求助? 5324531
关于积分的说明 15319452
捐赠科研通 4877021
什么是DOI,文献DOI怎么找? 2619917
邀请新用户注册赠送积分活动 1569204
关于科研通互助平台的介绍 1525787