Remote sensing estimation of regional PM2.5 based on GTWR model -A case study of southwest China

环境科学 归一化差异植被指数 中国 自然地理学 空间分布 地理 空气污染 人口 空气质量指数 普通最小二乘法 地理加权回归模型 气象学 气候变化 遥感 统计 人口学 地质学 生态学 数学 海洋学 考古 社会学 生物
作者
Lanfang Liu,Yan Liu,Feng Cheng,Yuanhe Yu,Jinliang Wang,Cheng Wang,Lanping Nong,Huan Deng
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:351: 124057-124057 被引量:4
标识
DOI:10.1016/j.envpol.2024.124057
摘要

Air pollution in China has becoming increasingly serious in recent years with frequent incidents of smog. Parts of southwest China still experience high incidents of smog, with PM2.5 (particulate matter with diameter ≤ 2.5 μm) being the main contributor. Establishing the spatial distribution of PM2.5 in Southwest China is important for safeguarding regional human health, environmental quality, and economic development. This study used remote sensing (RS) and geographical information system (GIS) technologies and aerosol optical depth (AOD), a digital elevation model (DEM), normalized difference vegetation index (NDVI), population density, and meteorological data from January to December 2018 for southwest China. PM2.5 concentrations were estimated using ordinary least squares regression (OLS), geographic weighted regression (GWR) and geographically and temporally weighted regression (GTWR). The results showed that: (1) Eight influencing factors showed different correlations to PM2.5 concentrations. However, the R2 values of the correlations all exceeded 0.3, indicating a moderate degree of correlation or more; (2) The correlation R2 values between the measured and remote sensed estimated PM2.5 data by OLS, GWR, and GTWR were 0.554, 0.713, and 0.801, respectively; (3) In general, the spatial distribution of PM2.5 in southwest of China decreases from the Northeast to Northwest, with moderate concentrations in the Southeast and Southwest; (4) The seasonal average PM2.5 concentration is high in winter, low in summer, and moderate in spring and autumn, whereas the monthly average shows a "V" -shaped oscillation change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在封我就急眼啦完成签到,获得积分10
刚刚
Biofly526完成签到,获得积分10
刚刚
qq发布了新的文献求助10
刚刚
didilucky完成签到,获得积分10
1秒前
1秒前
研友_西门孤晴完成签到,获得积分10
1秒前
BruceQ完成签到,获得积分10
2秒前
gaoww完成签到,获得积分10
3秒前
灰灰12138完成签到,获得积分10
3秒前
3秒前
七七完成签到,获得积分20
3秒前
开着飞机骑拖拉机完成签到,获得积分10
4秒前
科研通AI5应助斯文黎云采纳,获得10
5秒前
王老大发布了新的文献求助10
6秒前
科研通AI5应助mm采纳,获得10
6秒前
teshinyo完成签到,获得积分10
6秒前
Eusha完成签到,获得积分10
6秒前
WendyWen完成签到,获得积分10
7秒前
kaka1981sdu完成签到,获得积分10
7秒前
紫麒麟完成签到,获得积分10
8秒前
宁霸完成签到,获得积分0
8秒前
望北楼主完成签到,获得积分10
9秒前
哇哦完成签到,获得积分10
9秒前
lq完成签到,获得积分10
9秒前
Jindyla完成签到,获得积分10
9秒前
9秒前
虚幻星辰完成签到,获得积分10
10秒前
爆米花应助janie采纳,获得10
10秒前
雨过天晴发布了新的文献求助10
11秒前
科研工完成签到,获得积分10
11秒前
栗荔完成签到 ,获得积分10
11秒前
11秒前
朴素访琴完成签到 ,获得积分10
12秒前
12秒前
任我行完成签到,获得积分10
12秒前
冷静1等待完成签到 ,获得积分10
12秒前
LeiZha完成签到,获得积分10
13秒前
李行舟关注了科研通微信公众号
13秒前
顾矜应助隐形觅翠采纳,获得10
13秒前
红丽阿妹完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808241
求助须知:如何正确求助?哪些是违规求助? 3352939
关于积分的说明 10362041
捐赠科研通 3069095
什么是DOI,文献DOI怎么找? 1685376
邀请新用户注册赠送积分活动 810433
科研通“疑难数据库(出版商)”最低求助积分说明 766150