Genetic evidence for T-wave area from 12-lead electrocardiograms to monitor cardiovascular diseases in patients taking diabetes medications

孟德尔随机化 糖尿病 生物 全基因组关联研究 连锁不平衡 单核苷酸多态性 疾病 内科学 心脏病学 生物信息学 内分泌学 医学 遗传学 基因型 遗传变异 基因
作者
Mengling Qi,Haoyang Zhang,Xuehao Xiu,Dan He,D.N. Cooper,Yuanhao Yang,Huiying Zhao
出处
期刊:Human Genetics [Springer Nature]
卷期号:143 (9-10): 1095-1108 被引量:1
标识
DOI:10.1007/s00439-024-02661-6
摘要

Aims Many studies indicated use of diabetes medications can influence the electrocardiogram (ECG), which remains the simplest and fastest tool for assessing cardiac functions. However, few studies have explored the role of genetic factors in determining the relationship between the use of diabetes medications and ECG trace characteristics (ETC). Methods Genome-wide association studies (GWAS) were performed for 168 ETCs extracted from the 12-lead ECGs of 42,340 Europeans in the UK Biobank. The genetic correlations, causal relationships, and phenotypic relationships of these ETCs with medication usage, as well as the risk of cardiovascular diseases (CVDs), were estimated by linkage disequilibrium score regression (LDSC), Mendelian randomization (MR), and regression model, respectively. Results The GWAS identified 124 independent single nucleotide polymorphisms (SNPs) that were study-wise and genome-wide significantly associated with at least one ETC. Regression model and LDSC identified significant phenotypic and genetic correlations of T-wave area in lead aVR (aVR_T-area) with usage of diabetes medications (ATC code: A10 drugs, and metformin), and the risks of ischemic heart disease (IHD) and coronary atherosclerosis (CA). MR analyses support a putative causal effect of the use of diabetes medications on decreasing aVR_T-area, and on increasing risk of IHD and CA. ConclusionPatients taking diabetes medications are prone to have decreased aVR_T-area and an increased risk of IHD and CA. The aVR_T-area is therefore a potential ECG marker for pre-clinical prediction of IHD and CA in patients taking diabetes medications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助asiya采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
apong发布了新的文献求助10
1秒前
诚心无心完成签到,获得积分20
2秒前
Lucas应助DKC采纳,获得10
3秒前
profchen发布了新的文献求助30
4秒前
丁点发布了新的文献求助10
4秒前
友好的匪完成签到,获得积分10
5秒前
5秒前
6秒前
沉默皮卡丘完成签到 ,获得积分10
6秒前
李健应助踏实的酸奶采纳,获得10
6秒前
ddd发布了新的文献求助10
7秒前
有机卡拉米完成签到,获得积分10
7秒前
chy发布了新的文献求助10
7秒前
Ava应助apong采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
11秒前
11秒前
11秒前
领导范儿应助安静的猴子采纳,获得10
11秒前
11秒前
12秒前
无花果应助西奥采纳,获得10
14秒前
诚心无心发布了新的文献求助30
14秒前
腼腆的恶天完成签到,获得积分10
15秒前
15秒前
激情的逍遥完成签到,获得积分10
16秒前
Hello应助隐形的雪碧采纳,获得30
16秒前
英俊的铭应助七木采纳,获得10
17秒前
沈格发布了新的文献求助10
18秒前
西门长海完成签到,获得积分10
19秒前
拼搏飞柏完成签到,获得积分10
19秒前
21秒前
21秒前
21秒前
独步出营完成签到 ,获得积分10
21秒前
sheepm完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027