Feasibility of an NIR spectral calibration transfer algorithm based on optimized feature variables to predict tobacco samples in different states

偏最小二乘回归 校准 数学 统计 均方误差 人口 算法 变量消去 近红外光谱 生物系统 计算机科学 人工智能 光学 物理 生物 人口学 社会学 推论
作者
Yingrui Geng,Hongfei Ni,Huanchao Shen,Hui Wang,Jizhong Wu,Keyu Pan,Yongjiang Wu,Yong Chen,Yingjie Luo,Tengfei Xu,Xuesong Liu
出处
期刊:Analytical Methods [Royal Society of Chemistry]
卷期号:15 (6): 719-728 被引量:4
标识
DOI:10.1039/d2ay01805e
摘要

The prediction accuracy of calibration models for near-infrared (NIR) spectroscopy typically relies on the morphology and homogeneity of the samples. To achieve non-homogeneous tobacco samples for non-destructive and rapid analysis, a method that can predict tobacco filament samples using reliable models based on the corresponding tobacco powder is proposed here. First, as it is necessary to establish a simple and robust calibrated model with excellent performance, based on full-wavelength PLSR (Full-PLSR), the key feature variables were screened by three methods, namely competitive adaptive reweighted sampling (CARS), variable combination population analysis-iteratively retaining informative variables (VCPA-IRIV), and variable combination population analysis-genetic algorithm (VCPA-GA). The partial least squares regression (PLSR) models for predicting the total sugar content in tobacco were established based on three optimal wavelength sets and named CARS-PLSR, VCPA-IRIV-PLSR and VCPA-GA-PLSR, respectively. Subsequently, they were combined with different calibration transfer algorithms, including calibration transfer based on canonical correlation analysis (CTCCA), slope/bias correction (S/B) and non-supervised parameter-free framework for calibration enhancement (NS-PFCE), to evaluate the best prediction model for the tobacco filament samples. Compared with the previous two transfer algorithms, NS-PFCE performed the best under various wavelength conditions. The prediction results indicated that the most successful approach for predicting the tobacco filament samples was achieved by VCPA-IRIV-PLSR when coupled with the NS-PFCE method, which obtained the highest determination coefficient (Rp2 = 0.9340) and the lowest root mean square error of the prediction set (RMSEP = 0.8425). VCPA-IRIV simplifies the calibration model and improves the efficiency of model transfer (31 variables). Furthermore, it pledges the prediction accuracy of the tobacco filament samples when combined with NS-PFCE. In summary, calibration transfer based on optimized feature variables can eliminate prediction errors caused by sample morphological differences and proves to be a more beneficial method for online application in the tobacco industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
沉静傲易完成签到,获得积分10
4秒前
xiao金发布了新的文献求助10
4秒前
杨冰发布了新的文献求助30
4秒前
6秒前
yangyog完成签到,获得积分10
8秒前
LB发布了新的文献求助10
9秒前
黄焖鸡大王完成签到 ,获得积分10
10秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Lucas应助jitanxiang采纳,获得10
14秒前
linshunan完成签到 ,获得积分10
15秒前
明月半墙发布了新的文献求助10
16秒前
19秒前
20秒前
20秒前
21秒前
汤唯完成签到,获得积分10
23秒前
25秒前
ohenry发布了新的文献求助10
25秒前
wubin69发布了新的文献求助200
26秒前
Ava应助xmhxpz采纳,获得10
26秒前
小慧发布了新的文献求助10
27秒前
归尘发布了新的文献求助10
27秒前
领导范儿应助舒服的惜灵采纳,获得10
27秒前
科研通AI5应助hyh采纳,获得10
30秒前
30秒前
老马哥完成签到 ,获得积分0
31秒前
36秒前
38秒前
39秒前
驿寄梅花发布了新的文献求助10
41秒前
嗯呐完成签到,获得积分10
43秒前
萱萱发布了新的文献求助10
44秒前
hyh发布了新的文献求助10
44秒前
49秒前
烟花应助驿寄梅花采纳,获得10
49秒前
xmhxpz发布了新的文献求助10
52秒前
迷路的芝麻完成签到 ,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325704
关于积分的说明 10224008
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669040
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648