Application of improved Stacking ensemble learning in NIR spectral modeling of corn seed germination rate

堆积 过度拟合 集成学习 计算机科学 遗传算法 人工智能 随机森林 机器学习 选择(遗传算法) 支持向量机 集合预报 模式识别(心理学) 算法 人工神经网络 化学 有机化学
作者
Xiaojin Hao,Zhengguang Chen,Shujuan Yi,Jinming Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:243: 105020-105020 被引量:23
标识
DOI:10.1016/j.chemolab.2023.105020
摘要

Stacking ensemble learning is one of the most effective integration technologies and is increasingly applied to near-infrared spectroscopy combined with chemometrics methods. The prediction accuracy of Stacking is primarily affected by the selection of different models. However, many current studies are mainly artificial selection models' combinations. It affects the model's prediction accuracy and increases the algorithm's difficulty. It is difficult to efficiently and accurately find the optimal configuration scheme. This study applies a genetic algorithm to find the optimal base and meta learner combinations in Stacking ensemble learning. This method uses the near-infrared spectral data set of corn seed germination rate. First, select the best pretreatment methods for seven models, including Gaussian process regression (GPR), SVR, PLS, etc. The above seven single learners after pretreatment are taken as the candidate base learner, and then random forest (RF), SVR, PLS, and GPR are taken as the potential meta learner; use a genetic algorithm to select the optimal model combination configuration and generate GA-Stacking algorithm. The model prediction results of the improved model GA-Stacking are compared with several single models and Stacking ensemble learning via the artificial selection model combinations. The results show that the prediction performance using the GA-Stacking ensemble learning model is optimal, R2 is 0.9022, and RMSE is 0.1100. The experiment shows that the model combination selected by the genetic algorithm has significantly improved the prediction performance of the Stacking ensemble learning model and reduced the risk of the model's overfitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔子发布了新的文献求助10
1秒前
uniphoton完成签到,获得积分10
3秒前
情怀应助ss采纳,获得10
7秒前
11秒前
13秒前
告6人完成签到 ,获得积分10
16秒前
ss完成签到,获得积分10
16秒前
jing2000yr发布了新的文献求助10
17秒前
SATone发布了新的文献求助20
17秒前
18秒前
酷酷的铸海完成签到,获得积分10
20秒前
baling发布了新的文献求助200
21秒前
21秒前
zhang完成签到 ,获得积分10
23秒前
25秒前
25秒前
26秒前
Rita发布了新的文献求助10
29秒前
中岛悠斗完成签到,获得积分10
30秒前
土豪的紫荷完成签到 ,获得积分10
30秒前
8R60d8应助paz_1010采纳,获得10
31秒前
快乐开山完成签到 ,获得积分10
33秒前
田様应助科研通管家采纳,获得10
34秒前
赫若魔应助科研通管家采纳,获得10
35秒前
NexusExplorer应助科研通管家采纳,获得10
35秒前
CipherSage应助科研通管家采纳,获得10
35秒前
顾矜应助科研通管家采纳,获得30
35秒前
星辰大海应助科研通管家采纳,获得100
35秒前
JamesPei应助科研通管家采纳,获得10
35秒前
Ava应助科研通管家采纳,获得10
35秒前
自然怀梦完成签到,获得积分10
37秒前
冷傲的擎汉完成签到 ,获得积分20
39秒前
舒适的藏花给舒适的藏花的求助进行了留言
40秒前
三七完成签到,获得积分10
40秒前
YG-in完成签到,获得积分10
41秒前
42秒前
浮游应助zhangfuchao采纳,获得10
42秒前
故城完成签到 ,获得积分10
42秒前
43秒前
安徽梁朝伟完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4804341
求助须知:如何正确求助?哪些是违规求助? 4120965
关于积分的说明 12750005
捐赠科研通 3854064
什么是DOI,文献DOI怎么找? 2122468
邀请新用户注册赠送积分活动 1144515
关于科研通互助平台的介绍 1035729