Application of improved Stacking ensemble learning in NIR spectral modeling of corn seed germination rate

堆积 过度拟合 集成学习 计算机科学 遗传算法 人工智能 随机森林 机器学习 选择(遗传算法) 支持向量机 集合预报 模式识别(心理学) 算法 人工神经网络 化学 有机化学
作者
Xiaojin Hao,Zhengguang Chen,Shujuan Yi,Jinming Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:243: 105020-105020 被引量:17
标识
DOI:10.1016/j.chemolab.2023.105020
摘要

Stacking ensemble learning is one of the most effective integration technologies and is increasingly applied to near-infrared spectroscopy combined with chemometrics methods. The prediction accuracy of Stacking is primarily affected by the selection of different models. However, many current studies are mainly artificial selection models' combinations. It affects the model's prediction accuracy and increases the algorithm's difficulty. It is difficult to efficiently and accurately find the optimal configuration scheme. This study applies a genetic algorithm to find the optimal base and meta learner combinations in Stacking ensemble learning. This method uses the near-infrared spectral data set of corn seed germination rate. First, select the best pretreatment methods for seven models, including Gaussian process regression (GPR), SVR, PLS, etc. The above seven single learners after pretreatment are taken as the candidate base learner, and then random forest (RF), SVR, PLS, and GPR are taken as the potential meta learner; use a genetic algorithm to select the optimal model combination configuration and generate GA-Stacking algorithm. The model prediction results of the improved model GA-Stacking are compared with several single models and Stacking ensemble learning via the artificial selection model combinations. The results show that the prediction performance using the GA-Stacking ensemble learning model is optimal, R2 is 0.9022, and RMSE is 0.1100. The experiment shows that the model combination selected by the genetic algorithm has significantly improved the prediction performance of the Stacking ensemble learning model and reduced the risk of the model's overfitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大罗完成签到,获得积分10
1秒前
凡`发布了新的文献求助10
5秒前
希望天下0贩的0应助龙眼采纳,获得10
6秒前
orixero应助terry采纳,获得10
7秒前
8秒前
SYLH举报齐齐求助涉嫌违规
8秒前
科研通AI5应助lizhiqian2024采纳,获得10
8秒前
酷波er应助ZJT采纳,获得10
9秒前
9秒前
9秒前
9秒前
11秒前
筝zheng完成签到,获得积分10
12秒前
扶桑完成签到,获得积分10
12秒前
个性襄完成签到,获得积分10
13秒前
fan发布了新的文献求助10
13秒前
13秒前
结实星星发布了新的文献求助10
15秒前
李欣思发布了新的文献求助10
16秒前
18秒前
栗子鱼发布了新的文献求助10
18秒前
panyi完成签到,获得积分10
19秒前
19秒前
21秒前
lh完成签到,获得积分10
21秒前
lizhiqian2024发布了新的文献求助10
22秒前
栗子鱼完成签到,获得积分10
22秒前
23秒前
科研通AI5应助鲤鱼幼翠采纳,获得10
24秒前
科目三应助chenzi采纳,获得30
24秒前
丘比特应助完美芒果采纳,获得10
25秒前
王星星发布了新的文献求助10
26秒前
ray完成签到,获得积分10
27秒前
凡`完成签到,获得积分10
29秒前
29秒前
29秒前
蔚111完成签到 ,获得积分10
29秒前
虚心的代男完成签到,获得积分10
30秒前
32秒前
bkagyin应助aqua采纳,获得10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784309
求助须知:如何正确求助?哪些是违规求助? 3329382
关于积分的说明 10242030
捐赠科研通 3044893
什么是DOI,文献DOI怎么找? 1671397
邀请新用户注册赠送积分活动 800254
科研通“疑难数据库(出版商)”最低求助积分说明 759298