Healthcare Privacy-Preserving Federated Transfer Learning using CKKS-Based Homomorphic Encryption and PYHFEL Tool

同态加密 计算机科学 加密 医疗保健 互联网隐私 计算机安全 理论计算机科学 政治学 法学
作者
Anmar A. Al-Janabi,Sufyan Al-Janabi,Belal Al‐Khateeb
出处
期刊:Iraqi journal for computer science and mathematics [College of Education - Aliraqia University]
卷期号:5 (3): 473-488
标识
DOI:10.52866/ijcsm.2024.05.03.029
摘要

Digitization of healthcare data has shown an urgent necessity to deal with privacy concerns withinthe field of deep learning for healthcare organizations. A promising approach is federated transfer learning,enabling medical institutions to train deep learning models collaboratively through sharing model parameters ratherthan raw data. The objective of this research is to improve the current privacy-preserving federated transferlearning systems that use medical data by implementing homomorphic encryption utilizing PYthon forHomomorphic Encryption Libraries (PYFHEL). The study leverages a federated transfer learning model to classifycardiac arrhythmia. The procedure begins by converting raw Electrocardiogram (ECG) scans into 2-D ECGimages. Then, these images are split and fed into the local models for extracting features and complex patternsthrough a finetuned ResNet50V2 pre-trained model. Optimization techniques, including real-time augmentationand balancing, are also applied to maximize model performance. Deep learning models can be vulnerable toprivacy attacks that aim to access sensitive data. By encrypting only model parameters, the Cheon-Kim-Kim-Song(CKKS) homomorphic scheme protects deep learning models from adversary attacks and prevents sensitive rawdata sharing. The aggregator uses a secure federated averaging method that averages encrypted parameters toprovide a global model protecting users’ privacy. The system achieved an accuracy rate of 84.49% when evaluatedusing the MIT-BIH arrhythmia dataset. Furthermore, other comprehensive performance metrics were computed togain deeper insights, including a precision of 72.84%, recall of 51.88%, and an F1-score of 55.13%, reflecting abetter understanding of the adopted framework. Our findings indicate that employing the CKKS encryption schemein a federated environment with transfer cutting-edge technology achieves relatively high accuracy but at the costof other performance metrics, which is lower in the encrypted settings when compared to the plain one, anacceptable trade-off to ensure data privacy through encryption with achieving an optimal model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
优秀的尔风完成签到,获得积分10
1秒前
1秒前
现代雅香完成签到,获得积分10
3秒前
烟花应助R18686226306采纳,获得10
4秒前
Bonnie完成签到,获得积分10
5秒前
如风随水发布了新的文献求助10
6秒前
6秒前
现代雅香发布了新的文献求助10
6秒前
领导范儿应助伈X采纳,获得10
7秒前
酷波er应助小学猹采纳,获得10
7秒前
7秒前
ll发布了新的文献求助10
7秒前
Umwandlung发布了新的文献求助10
8秒前
红色流星完成签到,获得积分10
8秒前
大个应助不是假笑女王采纳,获得10
10秒前
HJQ发布了新的文献求助10
10秒前
墩墩小猪咪完成签到,获得积分10
11秒前
科研小白完成签到,获得积分10
13秒前
小鹿在努力完成签到,获得积分10
13秒前
15秒前
小马甲应助Dawn采纳,获得10
16秒前
小垃圾发布了新的文献求助10
17秒前
HJQ完成签到,获得积分10
17秒前
18秒前
19秒前
所所应助清脆巧蕊采纳,获得10
20秒前
浮游应助lvsehx采纳,获得10
20秒前
科目三应助loen采纳,获得10
20秒前
botion发布了新的文献求助10
21秒前
22秒前
Joker发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
起名字好难完成签到,获得积分10
23秒前
23秒前
伈X完成签到,获得积分10
25秒前
无聊的灵槐完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051463
求助须知:如何正确求助?哪些是违规求助? 4278787
关于积分的说明 13337536
捐赠科研通 4094019
什么是DOI,文献DOI怎么找? 2240725
邀请新用户注册赠送积分活动 1247199
关于科研通互助平台的介绍 1176337