Attention Mechanism Based on Deep Learning for Defect Detection of Wind Turbine Blade Via Multi-scale Features

刀(考古) 机制(生物学) 涡轮机 涡轮叶片 比例(比率) 计算机科学 海洋工程 人工智能 航空航天工程 地质学 工程类 结构工程 物理 地图学 地理 量子力学
作者
NULL AUTHOR_ID,NULL AUTHOR_ID,NULL AUTHOR_ID,Xintian Liu,Hao Yang,NULL AUTHOR_ID,Manyi Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad6024
摘要

Abstract An enhanced wind turbine blade surface defect detection algorithm, CGIW-YOLOv8, has been introduced to tackle the problems of uneven distribution of defect samples, confusion between defects and background, and variations in target scales that arise during drone maintenance of wind turbine blades. This algorithm is given based on the YOLOv8 model. Initially, a data augmentation method based on geometric changes and Poisson mixing was used to enrich the dataset and address the problem of uneven sample distribution. Subsequently, the incorporation of the Coordinate Attention (CA) mechanism into the Backbone network improved the feature extraction capability in complex backgrounds. In the Neck, the Reparameterized Generalized Feature Pyramid Network (Rep-GFPN) was introduced as a path fusion strategy and multiple cross-scale connections are fused, which effectively enhances the multi-scale expression ability of the network. Finally, the original CIOU loss function was replaced with Inner-WIoU, which was created by applying the Inner-IoU loss function to the Wise-IoU loss function. It improved detection accuracy while simultaneously speeding up the model's rate of convergence. Experimental results show that the mAP of the method for defect detection reaches 92%, which is 5.5% higher than the baseline network. The detection speed is 120.5 FPS, which meets the needs of real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feiying88发布了新的文献求助10
3秒前
科研通AI5应助xiaoxiao采纳,获得10
4秒前
科研通AI5应助龙傲天采纳,获得10
4秒前
5秒前
6秒前
Jasper应助开开采纳,获得10
6秒前
7秒前
Marco完成签到 ,获得积分10
8秒前
大模型应助潺潺流水采纳,获得10
8秒前
科研通AI5应助自觉柠檬采纳,获得10
8秒前
拉拉霍霍完成签到,获得积分10
9秒前
田様应助每天都是好时光采纳,获得10
9秒前
deletelzr完成签到,获得积分10
10秒前
xhcdz发布了新的文献求助10
11秒前
lalafish完成签到,获得积分10
11秒前
edsenone发布了新的文献求助10
12秒前
戚群雅完成签到,获得积分10
12秒前
小鹅完成签到,获得积分10
12秒前
跳跃念寒完成签到,获得积分20
13秒前
一帆风顺发布了新的文献求助10
14秒前
英姑应助重要的石头采纳,获得10
15秒前
科研通AI5应助feiying88采纳,获得10
16秒前
香菜统治全世界完成签到,获得积分20
17秒前
17秒前
李俊东发布了新的文献求助10
18秒前
19秒前
李爱国应助星禾吾采纳,获得10
20秒前
21秒前
可乐发布了新的文献求助10
23秒前
ppppppppp发布了新的文献求助10
23秒前
26秒前
段晓坤发布了新的文献求助50
27秒前
思源应助夏明浩采纳,获得10
29秒前
30秒前
30秒前
我是老大应助知性的颜采纳,获得10
31秒前
科研通AI5应助StonyinSICAU采纳,获得10
31秒前
天天快乐应助Swin采纳,获得10
32秒前
32秒前
33秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829407
求助须知:如何正确求助?哪些是违规求助? 3372039
关于积分的说明 10470425
捐赠科研通 3091592
什么是DOI,文献DOI怎么找? 1701274
邀请新用户注册赠送积分活动 818330
科研通“疑难数据库(出版商)”最低求助积分说明 770830