Multi-Objective Parallel Task Offloading and Content Caching in D2D-aided MEC Networks

计算机科学 任务(项目管理) 分布式计算 计算机网络 经济 管理
作者
Zhu Xiao,Jinmei Shu,Hongbo Jiang,John C. S. Lui,Geyong Min,Jiangchuan Liu,Schahram Dustdar
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:: 1-16 被引量:102
标识
DOI:10.1109/tmc.2022.3199876
摘要

In device to device (D2D) aided mobile edge computing (MEC) networks, by implementing content caching and D2D links, the edge server and nearby mobile devices can provide task offloading platforms. For parallel tasks, proper decisions on content caching and task offloading help reduce delay and energy consumption. However, what is often ignored in the previous works is the joint optimization of parallel task offloading and content caching. In this paper, we aim to find optimal content caching and parallel task offloading strategies, so as to minimize task delay and energy consumption. The minimization problem is formulated as a multi-objective optimization problem, concerning both content caching and parallel task offloading. The content caching is formulated as an integer knapsack problem (IKP). To solve the IKP problem, an enhanced Binary Particle Swarm Optimization algorithm is proposed. The parallel task offloading problem is formulated as a constrained multi-objective optimization problem, an improved multi-objective bat algorithm is proposed to address the problem. Experimental results show that our algorithm can decrease delay and energy cost by at most 45% and 56%, respectively. In addition, the parallel task offloading ratio remains over 91% even with large number of mobile devices (MDs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
闫冉发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
Sylvia关注了科研通微信公众号
2秒前
1renebaebae发布了新的文献求助10
3秒前
3秒前
3秒前
RoyWong发布了新的文献求助10
3秒前
生菜发布了新的文献求助20
4秒前
4秒前
淡出发布了新的文献求助10
4秒前
天真的酒窝完成签到,获得积分10
5秒前
yzx发布了新的文献求助10
5秒前
ye先生完成签到,获得积分10
5秒前
松子完成签到,获得积分10
6秒前
6秒前
NexusExplorer应助传统的柚子采纳,获得10
7秒前
乐乐应助大河向东刘先生采纳,获得10
7秒前
7秒前
二小发布了新的文献求助10
7秒前
xchi发布了新的文献求助30
7秒前
钮若翠发布了新的文献求助10
7秒前
科研通AI5应助刻苦丝袜采纳,获得10
7秒前
8秒前
8秒前
飘逸的飞丹完成签到 ,获得积分10
8秒前
8秒前
WELXCNK发布了新的文献求助10
8秒前
隐形的天问完成签到,获得积分10
9秒前
Lucas发布了新的文献求助10
9秒前
刘刘刘医生完成签到,获得积分10
11秒前
11秒前
小马甲应助懒洋洋采纳,获得10
11秒前
潜山耕之完成签到,获得积分10
12秒前
GIPCY完成签到 ,获得积分10
12秒前
12秒前
菜系发布了新的文献求助10
12秒前
zo发布了新的文献求助10
13秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832287
求助须知:如何正确求助?哪些是违规求助? 3374698
关于积分的说明 10485946
捐赠科研通 3094442
什么是DOI,文献DOI怎么找? 1703605
邀请新用户注册赠送积分活动 819491
科研通“疑难数据库(出版商)”最低求助积分说明 771587